DRAFT Transmission Development Plan Northern Ireland 2019-2028
Disclaimer

While all reasonable care has been taken to prepare this document, we can make no guarantee to the quality, accuracy and completeness of the information herein. We do not accept responsibility for any loss associated with the use of this information. Use of this document and the information it contains is at the user’s own risk.

Information in this document does not amount to a recommendation as regards to any possible investment. Before taking a business decision based on the content of this document, we advise that interested parties seek separate and independent opinion in relation to the matters covered by this document.

Copyright Notice

All rights reserved. This entire publication is subject to the laws of copyright. This publication may not be reproduced or transmitted in any form or by any means, electronic or manual, including photocopying without the prior written permission of SONI Ltd.
Table of Contents

DOCUMENT STRUCTURE ... 7

ABBREVIATIONS and GLOSSARY OF TERMS .. 9

Abbreviations .. 9
Glossary of Terms .. 11

EXECUTIVE SUMMARY ... 18

1 INTRODUCTION .. 23

1.1 Statutory and Legal Requirements .. 23
1.1.1 Statutory and Licence Requirements ... 23
1.1.2 European Statutory Requirements .. 24
1.2 Context of the Plan ... 25
1.2.1 All-Island and European Context .. 26
1.2.2 United Kingdom’s Referendum on EU Membership ... 27
1.3 Period Covered by the TDPNI 2019-2028 .. 27
1.4 Data Management ... 28
1.5 Planning Area Categorisation .. 28
1.6 The TDPNI and Other EirGrid Group Publications ... 30
1.6.1 Generation Capacity Statement .. 30
1.6.2 Ten Year Transmission Forecast Statement .. 30
1.6.3 Transmission Development Plan (Ireland) ... 31
1.6.4 Associated Transmission Reinforcements .. 31
1.7 Changes Since TDPNI 2018-2027 ... 33

2 STRATEGY FOR DEVELOPING THE GRID ... 35

3 GENERAL APPROACH TO DEVELOPING THE GRID ... 37

3.1 Scenario Planning ... 37
3.2 Planning Standards .. 38
3.3 Roles and Responsibilities .. 38
3.4 SONI’s Grid Development Process ... 39
3.5 Public Planning and Environmental Considerations 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.1</td>
<td>Public Planning Considerations</td>
<td>43</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Environmental Considerations</td>
<td>43</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Strategic Environmental Assessment</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>IMPLEMENTATION: HOW THE STRATEGY FOR DEVELOPING THE GRID WILL BE</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>IMPLEMENTED</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Our Approach to the Environment</td>
<td>47</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Introduction</td>
<td>47</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Policies and Objectives</td>
<td>48</td>
</tr>
<tr>
<td>4.1.3</td>
<td>General</td>
<td>48</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Biodiversity</td>
<td>48</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Climate Change</td>
<td>49</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Noise</td>
<td>49</td>
</tr>
<tr>
<td>4.1.7</td>
<td>Landscape</td>
<td>50</td>
</tr>
<tr>
<td>4.1.8</td>
<td>Cultural Heritage</td>
<td>50</td>
</tr>
<tr>
<td>4.1.9</td>
<td>Water</td>
<td>51</td>
</tr>
<tr>
<td>4.1.10</td>
<td>Air Quality</td>
<td>51</td>
</tr>
<tr>
<td>4.1.11</td>
<td>Tourism</td>
<td>52</td>
</tr>
<tr>
<td>4.1.12</td>
<td>Conclusion</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Our Approach to Technology</td>
<td>52</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Introduction</td>
<td>52</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Policies and Objectives</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Our Approach to Project Development</td>
<td>55</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Policies and Objectives</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>Our Approach to Planning and Consent of Projects</td>
<td>56</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Introduction</td>
<td>56</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Policies and Objectives</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>Our Approach to Consultation and Engagement</td>
<td>57</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Policies and Objectives</td>
<td>57</td>
</tr>
</tbody>
</table>
5 INVESTMENT NEEDS .. 59
 5.1 Policy Drivers of Transmission Network Investment .. 60
 5.1.1 Security of Transmission Network ... 60
 5.1.2 Market Integration .. 60
 5.1.3 Renewable Energy Sources Integration .. 61
 5.2 Technical Drivers for Transmission Network Investment .. 62
 5.2.1 Demand, Generation and Interconnection .. 62
 5.2.2 Changes in Inter–Regional Power Flows ... 66
 5.2.3 Changes in Asset Condition ... 66
6 PLANNED NETWORK DEVELOPMENTS ... 68
 6.1 Overview of the Plan ... 68
 6.2 Summary of Stage of Projects ... 70
7 PROJECT DESCRIPTION ... 74
 7.1 Overview ... 74
 7.2 Asset Replacement Projects ... 75
 7.3 The North and West Planning Area .. 81
 7.3.1 Renewable Generation Cluster Substations and New Connections 83
 7.3.2 Renewable Integration Developments .. 83
 7.3.3 Load Related and Security of Supply ... 87
 7.4 The South–East Planning Area ... 89
 7.4.1 Dual Asset Replacement/ Load Related and Security of Supply Projects 91
 7.4.2 Renewable Generation Cluster Substations and New Connections 92
 7.4.3 Renewable Integration Developments .. 92
 7.4.4 Load Related and Security of Supply ... 94
 7.4.5 Fault Level Replacements ... 95
 7.4.6 Interconnection ... 96
 7.5 Projects in Both Planning Areas .. 98
8 ENVIRONMENTAL APPRAISAL REPORT OF TDPNI 2019–2028 99
APPENDIX A: PROJECT TERMS ... 100
APPENDIX B: PLANNED NETWORK DEVELOPMENTS

NIE Networks Asset Replacement Projects

Projects in the North and West Planning Area

Projects in the South-East Planning Area

Projects in Both Planning Areas

APPENDIX C: NORTHERN IRELAND PROJECTS IN EUROPEAN PLANS

How are Northern Ireland transmission projects included in ENTSO-E’s TYNDP?

Criteria for Inclusion in TYNDP

SONI Projects in TYNDP 2018 and RegIP NS 2015

Northern Ireland Projects of Common Interest (PCIs)

Northern Ireland e-Highway 2050 projects

How are Northern Ireland and European Plans related?

APPENDIX D: REFERENCES
DOCUMENT STRUCTURE

The structure of the document is as follows:

The **Abbreviations and Glossary of Terms** provides a glossary of terms used in the document.

The **Executive Summary** gives an overview of the main highlights of the document and presents the plan in summary terms.

Section 1: Introduction: our statutory and legal obligations are introduced. The purpose and context of the Transmission Development Plan Northern Ireland (TDPNI) is outlined.

Section 2: Strategy for Developing the Grid: describes the overall strategy followed when developing the grid and the key strategic considerations when identifying reinforcements.

Section 3: General Approach to Developing the Grid: describes our approach to the network planning process and how we plan the development of the transmission network.

Section 4: Implementation: describes how the strategy for developing the grid will be implemented. This section is based on policies and objectives derived from Section 3.

Section 5: Investment Needs: the drivers of network development are introduced and discussed, as are the needs of the network which result from these drivers. The needs are identified through the application of the transmission development approach discussed in Section 2.
Section 6: Planned Network Developments: summarises the development projects that are currently in progress. These are the transmission projects which solve the network needs identified and discussed in Section 3.

Section 7: Project Description: summarises and categorises the development projects that are currently in progress by location.

Appendix A: Project Terms

Appendix B: Planned Network Developments

Appendix C: Northern Ireland Projects in European Plans

Appendix E: References
ABBREVIATIONS and GLOSSARY OF TERMS

Abbreviations

AA Appropriate Assessment
DSO Distribution System Operator
EAR Environmental Appraisal Report
EC European Commission
ECD Estimated Completion Date
EIA Environmental Impact Assessment
EIS Environmental Impact Statement
ENTSO–E European Network of Transmission System Operators for Electricity
ER Environmental Report
EU European Union
GCS Generation Capacity Statement
GIS Gas Insulated Switchgear
GW Gigawatt
HV High Voltage
HVDC High Voltage Direct Current
MW Megawatt
NIE Networks Northern Ireland Electricity Networks
NIS Natura Impact Statement
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>Project Agreement</td>
</tr>
<tr>
<td>RegIP</td>
<td>Regional Investment Plan</td>
</tr>
<tr>
<td>RES</td>
<td>Renewable Energy Sources</td>
</tr>
<tr>
<td>RGNS</td>
<td>Regional Group North Sea</td>
</tr>
<tr>
<td>RIDP</td>
<td>Renewable Integration Development Project</td>
</tr>
<tr>
<td>SAC</td>
<td>Special Area of Conservation</td>
</tr>
<tr>
<td>SEA</td>
<td>Strategic Environmental Assessment</td>
</tr>
<tr>
<td>SONI</td>
<td>System Operator Northern Ireland</td>
</tr>
<tr>
<td>SPA</td>
<td>Special Protection Areas</td>
</tr>
<tr>
<td>TAO</td>
<td>Transmission Asset Owner</td>
</tr>
<tr>
<td>TDP</td>
<td>Transmission Development Plan</td>
</tr>
<tr>
<td>TSO</td>
<td>Transmission System Operator</td>
</tr>
<tr>
<td>TSSPS</td>
<td>Transmission System Security and Planning Standards</td>
</tr>
<tr>
<td>TYNDP</td>
<td>Ten-Year Network Development Plan</td>
</tr>
<tr>
<td>TYTFS</td>
<td>Ten Year Transmission Forecast Statement</td>
</tr>
<tr>
<td>Utility Regulator</td>
<td>Utility Regulator for Northern Ireland</td>
</tr>
</tbody>
</table>
Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay</td>
<td>A bay is a connection point to a busbar, and comprises switchgear and measurement equipment.</td>
</tr>
<tr>
<td>Busbar</td>
<td>An electrical conductor located in a station that makes a common connection between several circuits.</td>
</tr>
<tr>
<td>Capacitor</td>
<td>An item of plant normally used on the electrical network to supply reactive power to loads (generally locally) and thereby support the local area voltage.</td>
</tr>
<tr>
<td>Circuit</td>
<td>A line or cable, including associated switchgear, which carries electrical power.</td>
</tr>
<tr>
<td>Circuit Breaker</td>
<td>A device used to open a circuit that is carrying electrical current.</td>
</tr>
<tr>
<td>Constraint</td>
<td>A change in the output of generators from the market schedule due to transmission network limitations – specifically the overloading of transmission lines, cables and transformers.</td>
</tr>
<tr>
<td>Contingency</td>
<td>An unexpected failure or outage of a network component, such as a generation unit, transmission line, transformer or other electrical element.</td>
</tr>
<tr>
<td>Coupler</td>
<td>This is a device which can be used to either connect or disconnect sections of busbars. A coupler increases security of supply and flexibility under both fault and maintenance conditions. A coupler can also be known as a Sectionalising Circuit Breaker.</td>
</tr>
</tbody>
</table>
Deep Reinforcement Refers to network reinforcement additional to the shallow connection that is required to allow a new generator or demand to operate at maximum export or import capacity respectively.

Demand The amount of electrical power that is consumed by a customer and is measured in Megawatts (MW). In a general sense, the amount of power that must be transported from transmission network connected generation stations to meet all customers' electricity requirements.

Demand-Side Management The modification of normal demand patterns usually through the use of financial incentives.

Deterministic The deterministic methodology is often referred to as the N-1 criterion. This means that the system must have sufficient capacity so that in the eventuality of a probable system outage, there are no resulting system problems such as overloading, under-voltage, over-voltage or instability.

Distribution System Operator (DSO) In the electrical power business, a distribution system operator is the licensed entity responsible for:

- operating and ensuring the maintenance and development of the distribution system in a given area (and its interconnections), if necessary and where applicable; and
- ensuring the long term ability of the system to
meet reasonable demands for electrical power.

The DSO in Northern Ireland is Northern Ireland Electricity Networks (NIE Networks). NIE Networks is also the asset owner of the Northern Ireland distribution system.

EirGrid The independent statutory electricity Transmission System Operator in Ireland.

Embedded Refers to generation that is connected to the distribution network or at a customer’s site.

Generation

Gas Insulated A compact form of switchgear where the conductors and circuit breakers are insulated by an inert gas (that is, SF_6).

Switchgear (GIS)

Generation The configuration of outputs from the connected generation units.

Dispatch

Grid A network of high voltage lines and cables (275 kV and 110 kV, and in future 400 kV) used to transmit bulk electricity supplies around Northern Ireland. The terms grid, electricity transmission network, and transmission system are used interchangeably in this Development Plan.

Interconnector The electrical link, facilities and equipment that connect the transmission network of one EU member state to another.
<table>
<thead>
<tr>
<th>Network</th>
<th>A factor, based on national and European energy policy objectives, that influences or “drives” the investment in the transmission network.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Driver</td>
<td>A deficiency or problem on the network which arises as a result of one or a number of network development drivers. Network reinforcement is required to solve a network development need.</td>
</tr>
<tr>
<td>Network Development Need</td>
<td>The physical flow of electrical power. It is typically measured in Megavolt–Amperes (MVA) which is the product of both ‘active’ and ‘reactive’ electrical power. The flow of ‘active’ power is measured in Megawatts (MW); the flow of ‘reactive power’ is measured in Megavars (Mvar).</td>
</tr>
<tr>
<td>Phase Shifting Transformer (PST)</td>
<td>A type of plant employed on the electrical network to control the flow of active power.</td>
</tr>
<tr>
<td>Reactive Compensation</td>
<td>The process of supplying reactive power to the network to compensate for reactive power usage at a point in time.</td>
</tr>
<tr>
<td>Reactive Power</td>
<td>Reactive power is that portion of electricity that establishes and sustains the electric and magnetic fields of alternating current equipment. Reactive power is measured in Megavars (Mvar).</td>
</tr>
</tbody>
</table>
Reactor
An item of plant comprising a coil of electrical wire. Depending on its installation and configuration, it is typically employed on the electrical network to either:

- limit short circuit levels; or
- prevent voltage rise.

Shallow Connection
Shallow Connection means the local connection assets required to connect a customer, or customers, to the transmission network. These types of connections are typically for the specific benefit of that particular customer or group of customers.

SONI
The independent statutory electricity Transmission System Operator in Northern Ireland.

Summer Valley
The annual minimum electrical demand that usually occurs in August. Annual minimum demand is typically 30% of the winter peak.

Summer Peak
The week-day peak electrical demand value between March and September, inclusive, which is typically 79% of the winter peak.

Switchgear
A combination of electrical equipment such as disconnects and/or circuit breakers used to isolate equipment in or near an electrical station.

Transformer
An item of electrical equipment that allows electrical power to flow between typically two different voltage levels in an alternating current (AC) power system.
Transmission Losses
A small proportion of energy is lost as heat or light whilst transporting electricity on the transmission network. These losses are known as transmission losses.

Transmission Peak
The peak demand that is transported on the transmission network. The transmission peak includes an estimate of transmission losses.

Transmission System Security and Planning
The set of standards that the transmission system is designed to meet. The criteria are deterministic as is the norm throughout the world. They set out objective standards which have been found to deliver an acceptable compromise between the cost of development and the transmission service provided.

Transmission Asset Owner (TAO)
In the electrical power business, a transmission asset owner is the entity which owns all of the assets associated with the transmission system, including substations, cables, overhead lines and associated structures. The TAO is responsible for the condition of transmission assets and thus all asset replacement projects. The TAO in Northern Ireland is Northern Ireland Electricity Networks.

Transmission System Operator (TSO)
A transmission system operator is the licensed entity that is responsible for:
- operating and ensuring the maintenance and development of the transmission system in a given area (and its interconnections), if necessary and
where applicable; and

- ensuring the long term ability of the system to transmit electrical power from generation plants to transmission connected demand and regional or local electricity distribution operators.

SONI is the TSO for Northern Ireland.

Uprate

To increase the capacity or rating of electrical equipment.

Winter Peak

This is the maximum annual system demand. It occurs in the period October to February of the following year, inclusive. Thus, for transmission planning purposes the reference to winter 18 covers the period from October 2018 to February 2019. The winter peak figures take account of the impact of projected Demand–Side Management initiatives.
EXECUTIVE SUMMARY

SONI, as Transmission System Operator (TSO), plays an important role in the economy of Northern Ireland. Through the provision of a secure electricity supply, SONI and its partners (particularly NIE Networks) is responsible for ensuring that the lights stay on for homes and businesses across the region. Sustaining a reliable supply of electricity is not just important for existing consumers, it is also crucial to attracting investment\(^1\). In order to ensure continued secure, reliable, economic and sustainable electricity supply SONI must continue to plan investment in the Northern Ireland transmission network.

The Transmission Development Plan Northern Ireland (TDPNI) 2019–2028 is the plan for the development of the Northern Ireland transmission network and interconnection over the ten years from 2019. This ten–year plan presents projects that are expected to meet the operational needs of the transmission network. In addition, future needs that may drive future potential projects are also discussed.

This report has been prepared in accordance with Article 22 of European Directive 72/2009 and Conditions 18 and 40 of the SONI TSO Licence.

Drivers of Transmission Network Development

The development of the Northern Ireland electricity sector is guided by a number of national and European Union (EU) rules and strategic objectives. These objectives guide investment in the Northern Ireland transmission network and are summarised as follows:

• Ensuring the security of electricity supply;

• Ensuring the competitiveness of the economy; and

• Ensuring the long-term sustainability of electricity supply.

In order to achieve these strategic objectives, we must invest in the development and maintenance of the electricity transmission network. Drivers of investment include:

• Securing transmission network supplies;

• Promoting market integration; and

• Facilitating the economic and efficient integration of Renewable Energy Sources (RES) and complementary thermal generation.

As demand or generation changes, or as the transmission network becomes more interconnected with neighbouring transmission networks, the flow of electrical energy throughout the transmission network changes. To accommodate these changes in power flows it is often necessary to modify or strengthen the transmission network to ensure performance and reliability levels are upheld. SONI and NIE Networks are obliged to develop an economic, efficient and coordinated transmission system.

In addition, the condition of transmission network assets is a factor. The timely maintenance or replacement of assets is required to provide the necessary level of security of supply. This is the responsibility of NIE Networks,

2 The European electric power transmission networks are interconnected, so as to be able to transmit energy from one country to the other.

3 The Electricity (Northern Ireland) Order 1992, Article 12
Reinforcement drivers and needs can be separated into a number of categories:

- Reinforcements required to support changes in, or connection of new generation;
- Reinforcements related to interconnection;
- Reinforcements to facilitate inter-regional power flows;
- Investments to address the condition of existing assets; and
- Reinforcements required to support changes in, or connection of new demand.

SONI are currently changing the way we develop the grid through the production of ‘Tomorrow’s Energy Scenarios’, a new approach which involves developing a range of possible energy scenarios dealing with renewables and electrification of heat and transport.

In the process of developing the range of energy scenarios, key policy makers, industry experts, and stakeholders are asked how they see the energy landscape changing over time. The final scenarios will be published and reviewed every two years. These scenarios will act as an input to our grid development process and aid in the identification of system needs, and the practicality and merit of different solutions.

Transmission Network Reinforcements

This development plan considers the 80 projects that are planned. Of this, 39 are NIE Networks asset replacement projects, and 41 are network development projects. The network development projects are shown by region and project category in Table E-1 below.

Table E-1: Summary of Number of Network Development Projects in Progress by Region and Project Category

<table>
<thead>
<tr>
<th>Project Category</th>
<th>North and West</th>
<th>South–East</th>
<th>Projects in Both Areas</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Build</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Uprate/ Modify</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Combination</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td>19</td>
<td>5</td>
<td>41</td>
</tr>
</tbody>
</table>

As well as the project categories detailed in Table E-1, Appendix B highlights the drivers and needs of each project.

Capital Expenditure

SONI’s expenditure on transmission development projects is estimated at £42.1 million for the period 2019 – 2028. This figure is the amount required to bring projects to the point of handover to NIE Networks. The projects are subject to SONI’s governance procedures. Estimated TAO costs associated with these projects are £449.2 million. The Utility Regulator will determine the amount that can eventually be recovered from customer and generator tariffs for these projects.

The Utility Regulator has already approved expenditure for asset replacement of £43.3 million for NIE Networks for the period 2017–2024\(^5\). There are two further asset replacement projects sitting outside this mechanism with indicative costs

\(^5\) See the NIE Networks RP6 final determination: https://www.uregni.gov.uk/nie-networks-rp6. Please note that the costs reported in the RP6 final determination are from 2015–16 and have been adjusted for inflation in this TDPNI for 2019.
estimated at £44.8 million\(^6\). Asset replacement projects currently planned after are estimated to cost £66.2 million, subject to the next NIE Networks price control (RP7).

Data Management

Transmission network development is ever evolving. To allow for comparison of network development projects on a year-on-year basis, data is represented at a fixed point in time – the data freeze date. The data freeze date of TDPNI 2019 is 1 January 2019.

Strategic Environmental Assessment

The TDPNI 2018–2028 was subject to Strategic Environmental Assessment\(^7\) (SEA) and Appropriate Assessment\(^8\) (AA) (see section 3.5.3). An Environmental Appraisal Report (EAR) was carried out on TDPNI 2019–2028 to assess the Plan against the adopted SEA statement. This EAR accompanies the TDPNI and the main findings have influenced and are incorporated into the Plan.

\(^6\) Coolkeeragh – Magherafelt 275 kV refurbishment and Ballylumford 110 kV switchboard replacement

\(^7\) EU Directive (2001/42/EC) Strategic Environmental Assessment is a requirement for certain plans and programmes.

1 INTRODUCTION

The Northern Ireland transmission system is a network of 275 kV and 110 kV (and in future 400 kV) high voltage lines and cables. It is the backbone of the power system; efficiently delivering large amounts of power from where it is generated to where it is needed, safely and reliably.

Electricity supply is essential to everyday life and to the local economy, and a reliable electricity network is the means by which we move electricity around Northern Ireland. The development of transmission network infrastructure is, therefore, of strategic importance.

This TDPNI outlines the:

- Drivers of network development;
- Network investment needs; and
- Projects required to address these needs.

1.1 Statutory and Legal Requirements

Regulations that are relevant to planning the transmission network include:

1.1.1 Statutory and Licence Requirements

- The Electricity Order (Northern Ireland) 1992:
 - Article 12.
- The Electricity Safety, Quality and Continuity Regulations (Northern Ireland) 2012.
- The Construction (Design and Management) Regulations (NI) 2016.
- SONI’s TSO Licence:
 - Condition 18 – Transmission Interface Arrangements
- Condition 20 – Operation of the Transmission System and the System Security and Planning Standards
- Condition 40 – Transmission Development Plan NI

- NIE Networks Transmission Licence:
 - Condition 19 – Developing and Maintaining the Transmission System

1.1.2 European Statutory Requirements

- Regulation (EC) No 714/2009 on conditions for access to the network for cross-border exchanges in electricity:
 - Article 4; Article 8 paragraph 3(b); Article 12.
- Directive 2009/72/EC concerning common rules for the internal market in electricity:
 - Paragraphs 1 and 4 of Article 22.
- Directive 2009/28/EC on the promotion of the use of energy from renewable sources:
 - Paragraph 2 of Article 16.
- Directive 2012/27/EC on energy efficiency:
 - Paragraph 5 of Article 15.

SONI is responsible for the planning and operation of the transmission network within Northern Ireland. We have a licence obligation to produce both a TDPNI annually and to contribute to a European Ten-Year Network Development Plan (TYNDP) every two years.

NIE Networks is responsible for the development and maintenance of the transmission system\(^9\), including asset replacement projects, in accordance with the [NIE Networks Transmission Licence, Condition 19. Available here](https://www.uregni.gov.uk/sites/uregni/files/media-files/NIE%20Transmission%20 Licence%20effective%20October%202017.pdf).
Transmission Interface Arrangements (TIA). SONI reviews all asset replacement proposals and these are incorporated in this Plan.

1.2 Context of the Plan

This TDPNI covers a period of ten years which, as well as being a statutory requirement under our licence, is in line with the European Network of Transmission System Operators for Electricity’s (ENTSO-E) TYNDP. As part of the preparation of the TDPNI, we consult with EirGrid as TSO in Ireland and with NIE Networks in compliance with the license condition. SONI is obliged to undertake a public consultation on the draft TDPNI. Following feedback received from the public consultation we update the TDPNI, as required, and provide a report to the Utility Regulator on feedback received. We prepare the final version of the TDPNI and submit it to the Utility Regulator for approval. A public consultation on the TDPNI is held by the Utility Regulator for Northern Ireland before approval.

This TDPNI, TDPNI 2019–2027, has been assessed against the adopted SEA statement through the accompanying Environmental Appraisal Report (EAR). Last year a Strategic Environmental Assessment (SEA) was undertaken on TDPNI 2018–2027 under the provisions of the European Communities Directive 2001/42/EC on the assessment of the effects of certain plans and programmes on the environment (SEA Directive) as transposed through the Environmental Assessment of Plans and Programmes Regulations (Northern Ireland) 2004 (S.R. 280/2004). A Habitat Regulations Assessment (HRA) was also prepared.

10 These are described in section 3.3
11 Directive 2009/28/EC, Article 22, Paragraph 4: “The regulatory authority shall consult all actual or potential system users on the ten-year network development plan in an open and transparent manner. Persons or undertakings claiming to be potential system users may be required to substantiate such claims. The regulatory authority shall publish the result of the consultation process, in particular possible needs for investments.”
The SEA aims to provide a high level of protection for the environment and to promote sustainable development. The SEA and HRA are anticipated to be valid for five years.

The Transmission Asset Owner (TAO), NIE Networks, is responsible for the detailed design and construction of projects. NIE Networks is also responsible for delivering asset replacement projects.

The development of the transmission network involves forecasting future needs. Solutions chosen to address these needs must maintain security and quality of supply within standards, while balancing costs and environmental impacts. The process is flexible to enable the long-term development of the network, and derogations against standards can be obtained in exceptional circumstances.

Considerations that shape the medium and long-term development of the transmission network are outlined below.

1.2.1 All–Island and European Context

Our TSO licence obliges us to carry out transmission planning on a coordinated all–island basis in conjunction with EirGrid. This requirement is met by the System Operator Agreement in place between EirGrid and SONI. Together we now publish All–Island Generation Capacity and Transmission Forecast Statements. The aim of coordinated planning is to ensure, as far as possible, that projects developed, particularly in border areas, will benefit the entire island.

European legislation requires all European TSOs to cooperate through ENTSO–E. ENTSO–E has six regional groups that co–ordinate network planning and development at regional level. We are members of the Regional Group North Sea (RGNS), which also includes EirGrid and the TSOs of Belgium, Denmark, France,
Germany, Great Britain, Luxembourg, Netherlands and Norway. One of the duties of RGNS is to produce a Regional Investment Plan (RegIP) every two years. This RegIP together with the other five RegIPs feed into ENTSO-E’s Ten Year Network Development Plan (TYNDP).

Projects of pan-European and regional significance\(^\text{12}\) are identified in the TDPNI using the following labels: "\(\text{EU TYNDP/ TYNDP_Project_No}\)" or "\(\text{EU RegIP/ RegIP_Project_No}\)". The most recent final versions of TYNDP\(^\text{13}\) and RGNS RegIP\(^\text{14}\) were issued in 2018 and 2017 respectively. Northern Ireland projects in European plans are listed in Appendix C.

1.2.2 United Kingdom’s Referendum on EU Membership

The United Kingdom’s June 2016 referendum on EU membership has presented uncertainties for the single electricity market on the island of Ireland.

Regardless of the UK leaving the EU, there will always be many shared benefits of working closely with our nearest neighbours. We aim to maintain a strong relationship between Northern Ireland, Great Britain and Ireland on energy matters. This TDPNI is based on the most up-to-date information available at the freeze date of 01 January 2019. Future TDPNIs will reflect any change in Northern Ireland’s relationship with the EU.

1.3 Period Covered by the TDPNI 2019–2028

TDPNI 2019–2028 presents our view of future transmission needs and our plan to develop the network through specific projects, to meet these needs over the next

\(^{12}\) Please see Appendix C for information on what qualifies a project to be of pan-European significance.

\(^{13}\) TYNDP 2018 can be found here: https://tyndp.entsoe.eu/tyndp2018/

ten years. It also includes NIE Networks’ view of asset replacement needs on the transmission system, including that provided for through its price control.

It is possible that changes will occur in the need for, scope of, and timing of the listed developments. Similarly, it is likely, given the continuously changing nature of electricity requirements, that new developments will emerge that could impact the plan as presented. These changes will be identified in future studies and accommodated in future TDPNIs. As such, the long-term development of the network is under review on an on-going basis, and at least every year.

This TDPNI presents the projects which are currently being advanced to solve the needs of the transmission network. In addition, future needs that drive future potential projects are also discussed.

1.4 Data Management

Transmission network development is continuously evolving. To help the comparison of network development projects year-on-year, and in the interest of routine reporting, data is represented at a fixed point in time – the data freeze date.

The TDPNI summarises transmission projects applicable as at the data freeze date, 1 January 2019. Future TDPNIs will highlight the changes that have happened since the previous Plan.

1.5 Planning Area Categorisation

Power flows on the transmission network are not contained within specific localities. Therefore, from a transmission planning viewpoint, it is more appropriate to represent planning areas that best reflect the conditions and power flows on the transmission network. For this purpose we refer to two planning areas in Northern Ireland:
- The North and West; and
- The South-East.

The regions and planning areas that best reflect the conditions and power flows on the transmission network are illustrated in Figure 1-1 below.

Figure 1-1 Illustration of the Northern Ireland planning areas
1.6 The TDPNI and Other EirGrid Group Publications

SONI and EirGrid are responsible for the publication of a number of statutory documents under their respective TSO licences. Two of these documents (the Generation Capacity Statement and the Ten Year Transmission Forecast Statement) are published on an all-island basis by both TSOs. The other statutory documents published by both SONI and EirGrid are detailed below.

1.6.1 Generation Capacity Statement

The Generation Capacity Statement (GCS) is published annually by SONI and EirGrid. The GCS provides:

- A ten year forecast of electricity demand in Ireland and Northern Ireland;
- Contracted changes to conventional generation;
- Forecasted changes to renewable generation; and
- A ten-year forecast of the generation capacity required to meet demand.

The most recent version of the GCS is Generation Capacity Statement 2019–2028 and is available from the SONI website\(^\text{15}\).

1.6.2 Ten Year Transmission Forecast Statement

The Ten Year Transmission Forecast Statement (TYTFS) is published annually by SONI and EirGrid. The TYTFS provides:

- Network models and data of the all–island transmission system;
- Forecast generation capacity and demand growth (taken from the GCS);
- Maximum and minimum fault levels at transmission system stations;

• Predicted transmission system power flows at different points in time; and
• Demand and generation opportunities on the transmission system.

The most recent version of the TYTFS is Ten Year Transmission Forecast Statement 2018 and is available from the SONI website\(^\text{16}\).

1.6.3 Transmission Development Plan (Ireland)

The Transmission Development Plan (TDP) for Ireland is published annually by EirGrid. It is the equivalent document to the TDPNI for Ireland and is the plan for the development of the Irish transmission network and interconnection. It covers a ten year period. The TDP presents projects that are needed for the secure operation of the Irish transmission network. At the interface, the two plans must talk to each other.

The most recent version of the TDP (Ireland) is TDP 2018–2027 and is available from the EirGrid website\(^\text{17}\).

1.6.4 Associated Transmission Reinforcements

Associated Transmission Reinforcements (ATRs) refer to new or upgraded transmission infrastructure. They are associated with a generation project and must be complete to release a generation project’s Firm Access Quantity (FAQ) allocation. To achieve firm access up to its Maximum Export Capacity (MEC) value in the Single Electricity Market, the generation project must be connected via its permanent connection as well as its ATRs being complete. Planned ATRs are captured within this TDPNI.

SONI publishes ATR status reports on its website so that generators can track the status of the ATRs associated with their generation project(s). Where the scheduled FAQ date for a generation project changes as a result of a change to the scheduled completion date or the completion of an ATR for that generation project, the customer is notified in writing, and the website is updated.
1.7 Changes Since TDPNI 2018–2027

Since the production of TDPNI 2018–2027, a number of SONI projects have been started, completed, cancelled or put on hold:

Table 1–1 Project changes since TDPNI 2018–2027

<table>
<thead>
<tr>
<th>Project</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleraine, Omagh and Tamnamore Reactive Compensation</td>
<td>Cancelled</td>
</tr>
<tr>
<td>Compressed Air Energy Storage Scheme Connection</td>
<td>Connection offer expired, project cancelled</td>
</tr>
<tr>
<td>Drumquin^{18} 110/33 kV Cluster</td>
<td>Connected Jul–2018</td>
</tr>
<tr>
<td>Fair Head/Torr Head Tidal Connection</td>
<td>Connection application withdrawn</td>
</tr>
<tr>
<td>Kells Remote Control</td>
<td>Cancelled</td>
</tr>
<tr>
<td>Kells Inter–bus Transformer 1 and 2 Replacement</td>
<td>Cancelled</td>
</tr>
<tr>
<td>Ballylumford–Eden 110 kV Circuit Uprate</td>
<td>Formerly part of the “Ballylumford – Castlereagh 110 kV Circuits Refurbishment”</td>
</tr>
<tr>
<td>Eden–Carmoney 110 kV Circuit Uprate/Reconfiguration</td>
<td>project</td>
</tr>
<tr>
<td>Carmoney–Castlereagh 110 kV Circuit Uprate/Reconfiguration</td>
<td></td>
</tr>
<tr>
<td>Ballylumford – Castlereagh 110 kV Circuits Refurbishment</td>
<td>Scope changed, now split into 3 projects</td>
</tr>
<tr>
<td>Castlereagh Reactors</td>
<td>Scope changed, now includes reactors at Castlereagh (x2),</td>
</tr>
</tbody>
</table>

^{18} Previously known as Curraghamulkin in TDPNI 2018–2027
<table>
<thead>
<tr>
<th>Project Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gort 110/33 kV 2nd Transformer</td>
<td>New project</td>
</tr>
<tr>
<td>Coolkeeragh Reactive Compensation</td>
<td>New project</td>
</tr>
<tr>
<td>Coolkeeragh – Magherafelt 275 kV Switchgear</td>
<td>New project</td>
</tr>
<tr>
<td>Omagh Main – Dromore Third Circuit</td>
<td>New project</td>
</tr>
<tr>
<td>Strabane – Omagh 110 kV Uprate</td>
<td>New project</td>
</tr>
<tr>
<td>East Tyrone Reinforcement Project</td>
<td>New project</td>
</tr>
<tr>
<td>Rasharkin Cluster 110/33 kV 2nd Transformer</td>
<td>New project</td>
</tr>
<tr>
<td>Tamnamore – Drumnakelly 110 kV Uprate</td>
<td>New project</td>
</tr>
<tr>
<td>Moyle 275 kV Reinforcement</td>
<td>New project</td>
</tr>
<tr>
<td>North West of NI 110kV & 275 kV Reins.</td>
<td>Formerly one project – “NW of NI Reinforcement”</td>
</tr>
<tr>
<td>North West of NI Large-scale Reinforcement</td>
<td></td>
</tr>
<tr>
<td>Coolkeeragh – Strabane 110 kV Uprate</td>
<td>Formerly part of the “NW of NI Reinforcement” project</td>
</tr>
<tr>
<td>Coolkeeragh – Killymallaght 110 kV Uprate</td>
<td></td>
</tr>
<tr>
<td>Killymallaght – Strabane 110 kV Uprate</td>
<td></td>
</tr>
</tbody>
</table>

Hannahstown (x1) and Tandragee (x1)
2 STRATEGY FOR DEVELOPING THE GRID

As the TSO for Northern Ireland, we have a statutory duty to ensure the transmission network is able to support all reasonable demands for electricity. In addition, we are required to enter into agreement for connection with parties seeking to connect to the transmission network. This in turn supports economic development in Northern Ireland.

Changes to demand, generation merit order, or to interconnection with neighbouring transmission networks may alter the flow of electrical power throughout the Northern Ireland transmission network. To accommodate these changes in power flows it is often necessary to reinforce the transmission network to ensure adequate performance and reliability levels are maintained, and that the cost of constraints is minimised.

The Northern Ireland electricity industry and its development take direction from a number of broad local\(^\text{19}\) and European\(^\text{20}\) strategic objectives. These objectives guide investment in the Northern Ireland transmission network and are summarised in the legislation\(^\text{21}\) which, requires SONI to:

- ensure the development and maintenance of an efficient, co-ordinated and economical system of electricity transmission which has the long-term ability to meet reasonable demands for the transmission of electricity; and
- contribute to security of supply through adequate transmission capacity and system reliability; and
- facilitate competition in the supply and generation of electricity

\(^{19}\) The Strategic Energy Framework can be found here: https://www.economy-ni.gov.uk/sites/default/files/publications/deti/sef%202010.pdf. Note that the SEF expires in 2020 and there is currently nothing in place beyond this date. The Department for the Economy is currently in the process of producing an energy strategy for NI beyond 2020.

\(^{21}\) Article 12, The Electricity (Northern Ireland) Order 1992
To ensure these objectives are met we must provide on-going and timely reinforcement of the Northern Ireland transmission network.

In the development of the network reinforcements we are led by the following strategy statements:

- Inclusive consultation with local communities and landowners will inform how we plan the development the network;
- All practical technology options will be considered for network development; and
- The network will be optimised to minimise the requirement for new infrastructure to be built.
3 GENERAL APPROACH TO DEVELOPING THE GRID

3.1 Scenario Planning

As TSO, we are obliged to plan the development of a safe, secure, reliable, economical, efficient, and coordinated transmission network that is able to meet all reasonable demands for electricity, in accordance with the activities permitted by our licence.

We plan the development of the transmission network taking account of the long-term needs and the economics of various development options. The need for development is determined by assessing long-term future network performance against technical standards. These technical standards are embodied in the Transmission System Security and Planning Standards\(^\text{22}\) (TSSPS), which are approved by the Utility Regulator. When it is established that expected changes across the network cannot be accommodated without violating the performance criteria outlined in the TSSPS, a range of issues are considered in selecting a transmission reinforcement strategy.

When assessing development options to address future potential network needs, we consider the impacts of each possible option on other potential development needs. Sometimes by making more effective use of the existing network, we can delay large investment or avoid the need for additional circuits. In some cases, a proposed project may meet more than one development requirement and prove more economic and have less impact on the environment than multiple projects. Where possible, we seek to find single development projects to meet multiple network requirements.

\(^{22}\) http://www.soni.ltd.uk/media/Northern-Ireland-TSSPS-September-2015.pdf
3.2 Planning Standards

To ensure transmission system reliability and security, predicted power flows of the network are compared with the requirements of the Transmission System Security and Planning Standards (TSSPS).

The TSSPS establishes a set of design criteria for the transmission system. This includes setting the minimum level of redundancy that should be incorporated into the design to deal with credible faults and outages. The standard includes checking for any circuits that would be overloaded or where voltages would fall below statutory levels.

SONI assesses the present and future transmission system against these standards and, when breaches are forecast, establishes plans to address those breaches. However, in some limited circumstances it may be more appropriate to seek derogation in the particular case (such as economic reasons). This derogation would be directed by The Utility Regulator following consultation with SONI and materially affected electricity undertakings, including the TAO and the TSO of Ireland.

3.3 Roles and Responsibilities

There are three parties licensed to participate in the transmission of electricity in Northern Ireland. Northern Ireland Electricity Networks (NIE Networks) is responsible for the development and maintenance of the transmission system in accordance with the Transmission Interface Arrangements (TIA), as mandated by Condition 18 of the SONI licence. SONI holds the Transmission System Operator license and is responsible for the operation and planning of the transmission system. Moyle Interconnector Limited also holds a transmission licence as the owner of the interconnector to Scotland.
The arrangements between NIE Networks and SONI are governed by the Transmission Interface Arrangements (TIA). The TIA arrangements include responsibilities regarding the preparation of draft asset replacement plans by NIE Networks and the system development plans prepared by SONI. The TIA allows for the ongoing development of an asset replacement and system development investment plan. SONI is responsible for ensuring that asset replacement and system development are integrated into an investment plan.

Some projects included in the investment plan will be well developed whereas others will be conceptual or indicative and therefore more likely to be changed from year to year. The plan is modified regularly as planning assumptions and scenarios are changed.

The investment plan is then circulated between SONI and NIE Networks before becoming a draft Transmission Development Plan Northern Ireland (TDPNI) and is subject to a Strategic Environmental Assessment (SEA). After the SEA process is complete, the plan is finalised as the annual TDPNI. The draft TDPNI is subject to public consultation\(^\text{23}\) by SONI and consultation and approval by the Utility Regulator.

3.4 SONI’s Grid Development Process

The planning of grid development projects by SONI is done under a three part process (See Figure 3-1 below). Asset replacement projects are progressed separately by NIE Networks. The process includes for stakeholder and public participation in the development of projects.

\(^{23}\) In parallel with the SEA process
Part 1: Planning: Identifying the optimum solution and what area may be affected

When a potential breach of the standards is identified, SONI will study the potential breach in detail including any other related issues. Consistent with good practice, as set out in the TSSPS, SONI may seek ways that would allow the potential breach to be managed operationally and put into place any changes to operational practice as may be required. However, in certain cases where that operational mitigation would lead to unacceptable cost or risk for customers, SONI will a need case to develop the transmission system.

When we identify the need to develop a transmission project we then have to consider how it is best delivered. This means looking at a number of solutions and narrowing these down based on their technical viability, deliverability, cost, potential impact on the environment and on those living and working in the general area where the project may be located. This process is conducted in close cooperation with NIE Networks.
The steps in planning are to first identify a long list of options across a range of different technologies. Such options will include the need for any new substations or overhead line and underground cables. In some cases where appropriate the use of flexible AC transmission systems (FACTS) and HVDC will also be considered depending on the need identified. The long list of options will be assessed against multi-criteria analysis including technical implications, asset management issues, environmental and cost benefit assessments to identify a shorter list of potential options.

SONI will then consider the short list in greater detail, continue to engage with NIE Networks and in some cases engage expert consultants to assist. These studies may include sensitivity studies to assess the performance of the options against different generation and demand assumptions. The process culminates with a recommendation for a preferred solution and tiering to establish the level of stakeholder engagement and consultation required.

At this stage SONI will engage with the Utility Regulator in regard to cost recovery. Depending on the nature of the project, SONI will seek to engage with key stakeholders before progressing the recommendation further. SONI will consider the stakeholder engagement findings and amend any plans accordingly before progressing further. It will also publicise the results of the stakeholder engagement process and its decision.

In parallel with the stakeholder engagement phase, and recognizing that the Utility Regulator is also a key stakeholder, SONI will seek approval for cost recovery through The Utility Regulator and progress the project to the outline design stage. This stage will identify any study areas for identification of new substations or corridors for overhead line and/or cable routes.
Part 2: Outline Design: Identifying where the project will be built

SONI manages the pre-construction outline design of transmission projects once the need has been identified (part 1). This also includes consultation with the TAO, NIE Networks. The projects can involve the development of new substations, overhead lines or cable circuits operating at 110 kV and above.

SONI is responsible for preparing documentation required to apply for planning consent for the development of the projects – this entails developing the design to the level required for obtaining planning consent including any necessary environmental reports or assessments, and consultations with stakeholders and landowners to obtain the right to gain access and install transmission equipment on their lands.

Part 3: Consents: Planning application to project handover to NIE Networks

SONI submits planning applications with the relevant planning authority. SONI is also responsible for submitting any other consent applications that may be required, e.g. Marine License with the relevant consenting authority. The planning authority will make a legally binding decision on the project. It may grant full planning permission, grant permission on the basis that we make changes, or refuse permission. SONI is also responsible for the acquisition of any wayleaves, easements, access rights, land options, leases and any other legal rights required for the installation of the new infrastructure.

Following receipt of planning and landowner consents the project is handed over to NIE Networks for detail design. This includes a review of the SONI functional specification (outline design and consents) and preparation of a design specification. Separate preconstruction work for NIE Networks will include tendering and procurement. Following receipt and review of the design specification from NIE
Networks, SONI issues a Transmission Project Instruction and enters into a Project Agreement with NIE Networks. NIE Networks then deliver the project.

3.5 Public Planning and Environmental Considerations

Planning and environmental considerations integrated into the three part process for grid development. This section details SONI’s public planning and environmental responsibilities and how these issues are considered in grid development (See also Section 4).

3.5.1 Public Planning Considerations

SONI is supported by experienced professional planning and ecological consultants. These consultants assist in the development of transmission infrastructure projects, and in other aspects of network development, from a planning and environmental perspective.

3.5.2 Environmental Considerations

Environmental considerations are integrated into the functioning of grid development at both the strategic (i.e. Plan level) and at the project level.

The requirements for Environmental Impact Assessment (EIA – for projects) and Appropriate Assessment (AA) (see below) are transposed into Northern Ireland law in Statutory Rules of Northern Ireland 2017 No. 83 The Planning (Environmental Impact Assessment) Regulations (Northern Ireland) 2017 and Conservation (Natural Habitats) Regulations 1995 (as amended).

Where necessary, applications for statutory consent are accompanied by an Environmental Statement (ES) or an Environmental Report (ER) the need for a statutory ES is informed by way of an EIA Screening report.
Similarly, screening for the need for AA for impacts on sites specifically designated for nature conservation is routinely undertaken for all our grid projects.

3.5.3 Strategic Environmental Assessment

Strategic Environmental Assessment (SEA) is a systematic process of predicting and evaluating the environmental effects of a proposed plan or programme, in order to ensure that these effects are adequately addressed as early as possible. A SEA is prepared in respect of this transmission development plan. The purpose of the SEA is to ensure that environmental considerations are integrated into the development plan and that to anticipate and avoid, where possible, potential adverse environmental impacts arising from the TDPNI.

The SEA has a five year lifespan, with review and drafting processes for the next SEA beginning in the final year. An SEA was carried out on TDPNI 2018–2027. However, as the preparation of a TDPNI is an annual rolling process, each TDPNI prepared is accompanied by an Environmental Appraisal Report (EAR) which assesses the plan against the provisions of the adopted SEA statement. This process ensures consistency of approach in environmental issues of each TDPNI across the lifespan of the SEA.

A summary of the environmental assessment and mitigation measures of this SEA is presented in Section 8 of this report. The relationship between the TDPNI, SEA and EAR is set out graphically in Figure 3–2 below.
EIA is the process of examining the environmental effects of projects, from consideration of environmental aspects at design stage, to preparation of a non-statutory Environmental Report, through to preparation of an Environmental Statement (ES). Projects where an ES is mandatory are identified in Annex I of the EIA Directive. This includes transmission of electricity by overhead lines where:

- The voltage is 220 kV or more; and
- The circuit length is more than 15 km.

An ES may be required for sub-threshold development where likely significant impacts on the environment are identified by the relevant planning authority.
The content and scope of the EIS is defined by the EIA Directive; however, detail varies between projects depending on local environmental sensitivities.

Appropriate Assessment (AA)

In accordance with the provisions of the EU Habitats Directive (92/43/EEC), any plan or project not directly connected to a Natura 2000 site (Special Area of Conservation (SAC) or Special Protection Area (SPA)), that is likely to have a significant effect on the site, is subject to Appropriate Assessment (AA) of its implications on the site.

The Habitats Directive is implemented via the Conservation (Natural Habitats) Regulations 1995 (as amended) in Northern Ireland.

The Appropriate Assessment process in Northern Ireland is generally referred to as a Habitats Regulations Assessment (HRA). A Screening for Appropriate Assessment is referred to as a Test of Likely Significance (ToLS), with the resultant report being referred to as a ToLS Report.

In Northern Ireland, the HRA process is undertaken by Shared Environmental Services (SES), a centralised body comprising specialist staff that provides expert environmental advice and support to Councils. SONI as project proponent will usually submit a ToLS Report or a HRA Report as part of a bundle of environmental information when seeking planning permission.
4 IMPLEMENTATION: HOW THE STRATEGY FOR DEVELOPING THE GRID WILL BE IMPLEMENTED

In this chapter we set out how our strategy for developing the grid is implemented. SONI is responsible for the inclusion of asset replacement projects in the investment plan and TDPNI, but the delivery of these asset replacement projects (including planning, consents and all detailed assessments) are the responsibility of the TAO, NIE Networks.

SONI’s strategy for planning the development of the grid is discussed under the following headings:

- Our approach to the environment;
- Our approach to technology;
- Our approach to project development;
- Our approach to planning and consenting of projects; and
- Our approach to consultation and engagement.

These topics build upon the previous chapter which detailed our general approach to developing the grid. Policies and objectives are set out to assist in delivery of the grid strategy objectives in a sustainable manner.

4.1 Our Approach to the Environment

4.1.1 Introduction

SONI has a legal responsibility to comply with planning law, including all relevant environmental legislation. In practice, this means that environmental issues inform the decision making process when it comes to developing the grid in Northern Ireland.
This TDPNI is subject to Strategic Environmental Assessment as outlined in previous sections. (See Chapter 8 for a detailed description of the process.)

Planning and environmental considerations are embedded into every grid development project that SONI undertakes in order to ensure that environmental issues are at the forefront of decision-making. Early involvement in projects allows potential environmental issues to be identified and avoided or managed in the course of project development.

4.1.2 Policies and Objectives

The following environmental policies (ENVP) have been compiled to ensure that SONI has due regard for existing environmental protection legislation and environmental best practice when developing projects.

Environmental objectives (ENVO) have also been developed for a number of environmental topics.

4.1.3 General

It is the policy of SONI:

ENVP1: To promote best environmental practice in the design and appraisal of transmission development projects.

4.1.4 Biodiversity

It is the policy of SONI:

ENVP2: To exercise its functions as a TSO in line with the Wildlife and Natural Environment Act (Northern Ireland) 2011 and the Northern Ireland Biodiversity Strategy (2015) to further the conservation of biodiversity so far as is consistent with the proper exercise of those functions.
ENVP3: To avoid adverse effects on sites designated for nature conservation including, Special Conservation Areas, Special Protection Areas, RAMSAR Sites, Areas of Special Scientific Interest and National Nature Reserves.

ENVP4: To protect NI priority species and habitats and other species protected under legislation in the development of any transmission infrastructure and to preserve key ecological linkage features.

It is the objective of SONI:

ENVO1: To prepare and utilise industry specific Ecology Guidelines for the development of Transmission projects. This will ensure a standard approach to ecological impact assessment for transmission projects.

4.1.5 Climate Change

It is the policy of SONI:

ENVP5: To integrate measures related to climate change into grid development, by way of both effective mitigation and adaptation responses, in accordance with available guidance and best practice.

4.1.6 Noise

It is the policy of SONI:

ENVP6: To employ methods on transmission infrastructure which minimise noise emissions in line with best industry practice.

It is the objective of SONI:

ENVO2: To give careful consideration to the siting of transmission infrastructure so as to ensure that noise-sensitive receptors are protected from potential noise emissions.
ENVO3: To seek to preserve and maintain noise quality in accordance with good practice and relevant legislation.

4.1.7 Landscape

It is the policy of SONI:

ENVP7: To have regard to the Northern Ireland Landscape Character Assessment 2000, and the Northern Ireland Seascape Character Assessment in the design and appraisal of its transmission development projects.

It is the objective of SONI:

ENVO4: To protect landscapes through the sustainable planning and design of transmission infrastructure and to have regard to important landscape designations including AONBs and the World Heritage Site.

4.1.8 Cultural Heritage

It is the policy of SONI:

ENVP8: To take reasonable measures to ensure that the special interest of protected structures, including their curtilages and settings, are protected when considering site or route options for the planning of transmission infrastructure.

ENVP9: To protect archaeological material when planning transmission infrastructure, by avoidance or by best practice mitigation measures.
4.1.9 Water

It is the policy of SONI:

ENVP10: That there is no increase in flood risk as a result of transmission development, and to ensure any flood risk to the development is appropriately managed.

ENVP11: To promote the use of sustainable urban drainage systems in any new developments where it is appropriate.

ENVP12: To have regard to Planning Policy Statements and Supplementary Planning Guidance: PPS 15 Planning and Flood Risk Development Control Considerations in the preparation of grid development strategies and plans.

It is the objective of SONI:

ENVO5: That all grid development proposals, and in particular, transmission substation developments, shall carry out, to an appropriate level of detail, a site-specific Flood Risk Assessment that shall demonstrate compliance with all current Guidelines, standards and best practice. The Flood Risk Assessment shall pay particular emphasis to residual flood risks, site-specific mitigation measures, flood-resilient design and construction, and any necessary management measures.

4.1.10 Air Quality

It is the policy of SONI:

ENVP13: To preserve and maintain air quality in accordance with good practice and relevant legislation in the proposed construction of its transmission projects.

ENVP14: To ensure appropriate dust suppression during construction works.
4.1.11 Tourism

It is the policy of SONI:

ENVP15: To consider the potential impact upon tourism in the planning of transmission projects.

It is the objective of SONI:

ENVO6: To identify the nature of tourism in a project area; to consider the cumulative / in combination impact on tourism of a project and to consider short term and long term impacts of grid development projects on tourism as appropriate.

4.1.12 Conclusion

All of the environmental policies and objectives detailed above are assessed against Strategic Environmental Objectives. This is provided in the SEA Environmental Report.

4.2 Our Approach to Technology

4.2.1 Introduction

As outlined in Chapter 2 of this document, the SONI Strategy sets out three strategy statements, two of which directly relate to technology in transmission infrastructure development:

- We will consider all practical technology options; and
- We will optimise the existing grid to minimise the need for new infrastructure.
The use of new technologies can bring a number of advantages, including enhanced operational performance, improved system reliability, shortened construction times and reduced impact on the environment. All of these have the potential to reduce system costs.

We have developed a world-leading initiative “Delivering a Secure, Sustainable Electricity System” (DS3 programme). The aim of the programme is to meet the challenges of operating the electricity system in a secure manner while achieving the 2020 renewable electricity targets. The programme is designed to ensure that we can securely operate the power system with increasing amounts of variable renewable generation over the coming years.

We continued to examine the performance of underground cables and their technical impact on the network, noting their advantage in terms of the potential for reduced visual impact compared with overhead lines. However, this must be balanced against costs as well as the potential impacts on sensitive environmental and ecological areas from what can be significant civil engineering works. We will continue to assess technological developments in this area to ensure the full capability of this technology is available for use on the NI grid.

The transmission grid in Northern Ireland, similar to other European and international grids, uses high voltage alternating current (HVAC). Where power is to be transferred over long distances it may be cost effective and technically possible to do so using high voltage direct current (HVDC). Over the last number of years we have continued to examine the performance of HVDC and its technical impact on the network.

Demand Side Management and Response has been used in Northern Ireland for many years, primarily at industrial level. It works by customers reducing their
electricity consumption on request. This helps us to operate the grid more securely.

We are also investigating the use of modular power flow control technologies that may enable us to make better use of the existing transmission network.

In most cases overhead line technology remains the most reliable and least expensive option for developing new circuits.

Over the last number of years, we have learned that the level of uncertainty over the future usage of the grid is increasing. To cater for this, we are changing how we plan the grid. Our new approach involves developing a range of energy scenarios (possible situations or events that impact on energy) called ‘Tomorrow’s Energy Scenarios’.

In the process of developing the range of energy scenarios, key policy makers, industry experts, and stakeholders are asked how they see the energy landscape changing over time. The final scenarios will be published and reviewed every two years. We will use these scenarios throughout our planning analysis to assess the future needs of the electricity system, and to test the practicality and merits of different options for grid development. These scenarios were consulted upon by SONI from September to November 201924. Once the scenarios are finalised they will serve as an input to our grid development process and consequently future iterations of the TDPNI.

4.2.2 Policies and Objectives

It is the policy of SONI:

TP1: To promote and facilitate the sustainable development of a high-quality transmission grid to serve the existing and future needs of NI.

TP2: To consider all practical technology options in the development of projects, including maximising use of existing transmission grid.

4.3 Our Approach to Project Development

4.3.1 Introduction

SONI undertakes a number of grid development projects as part of its statutory role in planning the development of and operating the transmission grid.

A focus in the development of our projects is on matters of proper planning and sustainable development. This requires a careful balancing of the technical need and solutions for a project with appropriate and adequate opportunities for public participation in the project development process.

SONI has established an approach to developing grid projects in Northern Ireland. This is a three part process, from the identification of a need to develop the grid to the eventual hand over to NIE Networks for construction and operation of a project by SONI. This approach integrates the technical development of a project with increased and enhanced engagement with stakeholders, communities and landowners. We are now progressing with a managed transition to full implementation of this approach across our grid development projects.
4.3.2 Policies and Objectives

The following policies and objectives have been adopted by SONI in order to ensure an appropriate and sustainable approach to the development of our transmission projects.

It is the policy of SONI:

PDP1: To develop projects in accordance with SONI’s *Process for Developing the Grid in Northern Ireland.*

PDP2: To promote sustainable grid development by balancing complex and/or competing technical, economic, environmental, social and deliverability goals and priorities in decision-making.

PDP3: To ensure that grid development is carried out in an economically efficient manner, and seek derogation from the Utility Regulator when this is not possible.

4.4 Our Approach to Planning and Consenting of Projects

4.4.1 Introduction

The SONI license requires it to plan and operate the transmission system. SONI is also required to carry out these duties in accordance with the TIA. The TIA requires SONI to develop the design of projects to the point where consents are obtained. Our grid developments occur within a planning and environmental context. In this context the focus is on matters of proper planning and sustainable development, and where public participation is of key importance, as is the environmental and ecological impact of our projects, along with providing an economic solution for end-users of the network.
4.4.2 Policies and Objectives

The following policies and objectives have been adopted by SONI in order to ensure an appropriate and sustainable approach to the planning and consenting of our transmission projects.

It is the policy of SONI:

PCP1: To have regard to relevant legislation and guidelines in respect of planning and consenting of transmission infrastructure development projects, and make provision for any policies for the provision of transmission infrastructure set out in these documents.

PCP2: To have regard to precedent arising from decisions of the Competent Authorities, and of the High Court in Judicial Review of decisions, relating to the planning and consenting of transmission infrastructure development projects.

PCP3: To promote sustainable grid development by balancing complex and/or competing technical, economic and environmental goals and priorities in decision-making.

4.5 Our Approach to Consultation and Engagement

4.5.1 Policies and Objectives

The following policies and objectives have been adopted by SONI in order to ensure an appropriate and sustainable approach to consultation and engagement in the development of our transmission projects.
It is the policy of SONI:

CEP1: To consult and engage with statutory and non-statutory stakeholders, including communities, landowners and the general public, at the earliest appropriate stage of a project’s development.

CEP2: To recognise and develop the essential role that communities, landowners and other stakeholders play in transmission infrastructure development, and to engage with different stakeholders as appropriate during the life of a grid development project.

CEP3: To ensure consultation and engagement feedback is appropriately considered in decision making.
5 INVESTMENT NEEDS

SONI is responsible for planning and operating an economic, efficient and coordinated electricity transmission network in Northern Ireland. Key to achieving this is a reliable and high-quality electricity infrastructure which powers the NI economy and supports investment in the region.\(^\text{25}\)

The Strategic Energy Framework (SEF)\(^\text{26}\) released in 2010 sets out Northern Ireland’s energy future. Investment in the transmission system is necessary to enable Northern Ireland’s transition to a low carbon energy future. The SEF expires in 2020 and there is currently nothing in place beyond this date, however it is assumed that decarbonisation targets will continue to increase beyond 2020. In 2019, the UK government set a legally binding target of full decarbonisation by 2050 and it is anticipated that future energy policy in Northern Ireland will reflect this. The Department for the Economy is currently engaged in drafting a replacement for the SEF and SONI is engaged in this process. In this regard, the TDPNI is developed to support local government objectives and enable this energy transition.

By facilitating new connections onto the network, reviewing maintenance plans and identifying the future electrical needs of Northern Ireland, SONI can direct and plan investment in the transmission system. This investment will, in turn, secure the electricity supply into the future.

\(^{26}\) https://www.economy-ni.gov.uk/sites/default/files/publications/deti/sef%20202010.pdf

Note that the SEF expires in 2020 and there is currently nothing in place beyond this date.
5.1 Policy Drivers of Transmission Network Investment

In order to achieve the identified strategic objectives laid out by national and EU policies, we must continue to produce investment plans and progress individual projects to develop the electricity transmission network. Specific drivers of investment in transmission network infrastructure are identified, and described in the following sections.

5.1.1 Security of Transmission Network

Security of supply generally addresses two separate issues:

- The availability of primary energy resources and ability to generate sufficient electricity to meet demand (which is the responsibility of the UR and the Department for the Economy); and

- The ability of the transmission network to reliably transport electrical energy from the generators, where it is generated, to the demand centres, where it is consumed, as set out in the TSSPS.

The TDPNI is aimed at addressing the security of supply issues that relate to the transmission network.

Therefore, for this document, security of supply means the ability of the transmission network to reliably and securely transport electrical energy from where it is generated to the demand centres where it is consumed.

5.1.2 Market Integration

With increased market integration, electrical power can flow from areas where it is cheap to produce to areas where it is more highly valued. Therefore, the aim is to make the EU electricity markets more integrated.
The integration of RES and other forms of low carbon generation significantly increases the power exchange opportunities across the region. Differences in national targets combined with varying availabilities of renewable sources across Europe will lead to greater penetration of RES in certain areas compared to others. Therefore, there is a need to reinforce the transmission networks between and within EU countries to obtain these economic benefits.

5.1.3 Renewable Energy Sources Integration

Developing renewable energy is an integral part of Northern Ireland’s sustainable energy objectives and climate change strategy. In comparison to fossil fuels, RES has lower or no net emissions when compared to fossil fuels. RES contribute to the decarbonisation of the energy supply and reduction in greenhouse gases emissions. They also contribute to energy security, being, for the most part, an indigenous energy source. In a period of volatile energy costs RES can also contribute to cost competitiveness by reducing dependence on imported fossil fuels.

At the moment windfarms are the main sources of renewable electricity generation in Northern Ireland. However, as Europe moves to further decarbonise its energy system, it is expected that additional forms of renewable energy will be further developed e.g. solar, biomass, wave and tidal.

In order to fulfil both European and local renewable targets, many RES–related projects are expected to be initiated throughout the period of this TDPNI. Many of these projects are located in rural areas where the transmission network is less developed. This places pressure on the electricity transmission network in these

27 Northern Ireland currently has a non-binding target of 40% electricity consumption to be met by renewable sources by 2020. This is currently under review by the Department for the Economy.
rural areas. Significant challenges will arise in extending and reinforcing the network to connect new RES.

5.2 Technical Drivers for Transmission Network Investment

Technical drivers of transmission network investment include changes in demand, generation and interconnection, inter-regional power flows and changes in asset conditions.

5.2.1 Demand, Generation and Interconnection

Changes in Demand and Generation

Demand growth and the connection of new demand can give rise to higher power flows which may trigger the need to reinforce the network as a result. Closure or reduction in the size of demand facilities can reduce the power flows on lines feeding the load. However, in certain cases where the demand is absorbing local generation and reducing the amount of generation exported from the area, the closure can lead to increased power flows on specific transmission lines.

Our All-Island Generation Capacity Statement 2019 (GCS)28, available \url{here}29, details the forecast of electricity demand for the years 2019 to 2028. The peak demand in Table 5–1 corresponds to the forecast median transmission system peak demand published in GCS 2019.

28 It is important to note that the information in the GCS 2018 is based on the best information available at the freeze date, October 2017.

29 \url{http://www.soni.ltd.uk/media/documents/Generation_Capacity_Statement_2018.pdf}
Table 5-1 Forecast Peak Demand and Generation Capacity over the period 2019 to 2028

<table>
<thead>
<tr>
<th>Year</th>
<th>Peak Demand (GW)</th>
<th>Generation Capacity (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>1.74</td>
<td>3.48</td>
</tr>
<tr>
<td>2020</td>
<td>1.74</td>
<td>3.48</td>
</tr>
<tr>
<td>2021</td>
<td>1.75</td>
<td>3.57</td>
</tr>
<tr>
<td>2022</td>
<td>1.76</td>
<td>3.59</td>
</tr>
<tr>
<td>2023</td>
<td>1.77</td>
<td>3.59</td>
</tr>
<tr>
<td>2024</td>
<td>1.79</td>
<td>3.59</td>
</tr>
<tr>
<td>2025</td>
<td>1.83</td>
<td>3.01</td>
</tr>
<tr>
<td>2026</td>
<td>1.85</td>
<td>3.01</td>
</tr>
<tr>
<td>2027</td>
<td>1.87</td>
<td>3.01</td>
</tr>
<tr>
<td>2028</td>
<td>1.88</td>
<td>3.01</td>
</tr>
</tbody>
</table>

Our All–Island Ten Year Transmission Forecast Statement 2018 (TYTFS)\(^{31}\), available [here]({#})\(^{32}\), includes information on how the GCS demand forecast relates to each individual demand centre node over the period covered by this TDPNI.

Because of the relative size of individual generators, changes in generation installations, whether new additions or closures can have a more significant impact

\(^{30}\) This forecast is based on information presented in GCS 2019 and TYTFS 2018. The Moyle interconnector is not included in the figures above.

\(^{31}\) It is important to note that the information in the TYTFS 2018 is based on the best information available at the freeze date, July 2018.

on power flows than demand. This is equally so in the case of interconnectors which are treated as generators during periods when power is imported.

The addition of new generation capacity requires network development to connect the new generator to the network. This provides a path for electric power flow between the new generator and the transmission network. This is known as the shallow connection. The new generation capacity will inevitably alter the power flows across the network, which has the potential to create overload problems deep into the network. To resolve these overloads we need further reinforcements (known as deep reinforcements) to allow full network access.

The connection of large generators, or groups of generators, combined with the increasingly meshed nature of the transmission network results in lower network impedance and consequently increased short circuit levels. This is a safety issue, as under fault conditions such high short circuit levels may cause catastrophic failure of high voltage equipment. We monitor fault levels on the network and take measures to prevent such conditions occurring. The areas where the network is close to the fault rating of installed equipment, without mitigation, are highlighted on the map in Figure 5-1. Note that mitigation measures will be used to manage fault levels that would otherwise exceed switchgear rating. This may include reconfiguration of the transmission system as necessary until switchgear is replaced or alternative permanent solutions put in place.

Table 5-1 highlights the level of existing generation and projected levels of generation expected to connect over the period of this TDPNI, as detailed in the TYTFS 2018. It is important to note that this figure does not include additional generation that is in the applications queue, but is not contracted as of the freeze date of January 2019, as these generators do not yet have an agreed connection method.
The projected changes in generation are accommodated by the reinforcements included in this TDPNI. This includes the identified future potential projects discussed in Chapter 6.

Figure 5–1 Stations with forecast high fault levels, 2018 – 2024 (from TYTFS 2018)

Changes in Northern Ireland’s Interconnection

EU Policy recognises the economic and technical benefits associated with increased interconnection and therefore seeks to promote interconnection between European transmission systems. Increased interconnection between transmission networks results in a larger energy market. With increased market integration there is greater competition and the potential for prices to be reduced. With increased interconnection there is also access to a broader generation base, which enhances
the networks’ security of supply. This can potentially defer the need for additional generation to be constructed to meet security of supply standards or requirements.

The planned second North–South Interconnector between Northern Ireland and Ireland is addressed in this TDPNI.

5.2.2 Changes in Inter–Regional Power Flows

The following factors have the potential to significantly change the flow of electrical power throughout the transmission network. They can drive the need for network reinforcements over the next ten years and beyond:

- Changes in demand;
- Further integration with neighbouring countries; and
- Integration of significant levels of new generation (both conventional and renewable).

There is now a growing need to accommodate a much broader range of plausible, credible flow patterns across the network. This is due to the extent of the likely changes that are envisaged for Northern Ireland, particularly in respect of RES integration. To cater for a broader range of flow patterns, greater transmission network flexibility is required.

5.2.3 Changes in Asset Condition

Transmission network assets have a finite lifespan. The useful life of transmission assets are impacted by a number of factors. These include:

- The age of the asset;
- Technology type and its propensity for obsolescence;
- Maintenance adequacy and effectiveness;
- Environmental conditions; and

- Utilisation

In order to ensure that security of supply is not compromised, routine condition assessments are carried out by the TAO. These assess the condition of the assets and estimate remaining useful life.

Typically, where assets are considered to have reached the end of their useful life and they continue to be required, assets are:

- Refurbished;

- Replaced on a “like-for-like” basis; or

- Replaced with higher rated equipment to cater for future needs.
6 PLANNED NETWORK DEVELOPMENTS

6.1 Overview of the Plan

This chapter summarises the network development projects that are a result of the transmission network development planning process (outlined in Section 2.4). Projects are described in greater detail in Chapter 7 and Appendix B.

The TDPNI includes a total of 80 projects that are currently in progress. These projects are categorised as either:

- New Build;
- Uprate/Modify;
- Refurbish/Replace related projects; or
- Combination.

New Build projects: are projects that involve the construction of new substations or new circuits. This category also includes projects that involve the installation of new equipment in existing substations.

An example of a new build project is the installation of new transformers or new reactive support devices within existing stations.

Uprate/Modify projects: are projects that involve the uprating of existing assets. An example of an uprate project is the changing of equipment to increase the capacity of circuits between stations; or busbars within existing stations.

This category also includes projects that involve the modification or reconfiguration of existing assets.
An example of a modification project is the installation of new couplers in existing substations.

Refurbish/ Replace projects: are projects that involve the refurbishment of existing substations or circuits. This category also includes projects that involve the replacement of existing assets. For example, the replacement of stations at or close to the end of their useful life or replacement and upgrading of protection in existing stations.

Combination: are projects that involve a combination of any of the three categories above.

Table 6–1 below summarises the 80 active projects into their respective categories.

<table>
<thead>
<tr>
<th>Project Category</th>
<th>Network Development Projects</th>
<th>Asset Replacement projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Build</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Uprate/ Modify</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>Combination</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>41</td>
<td>39</td>
</tr>
</tbody>
</table>
6.2 Summary of Stage of Projects

Table 6-2 below summarises the number of development projects (not including the 39 asset replacement projects) in each phase of network development.

Table 6-2 Number of Development Projects in each stage of development

<table>
<thead>
<tr>
<th>Part 1 Planning</th>
<th>Part 2 Outline Design</th>
<th>Part 3 Consents</th>
<th>Under Construction</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>41</td>
</tr>
</tbody>
</table>

Figure 6-1 below illustrates the location of the larger network development projects in Parts 1 to 3, excluding the NW of NI large scale Reinforcement project, which are detailed in Figure 6-2. Figure 6-3 shows NIE Networks asset replacement projects.

For those projects in the early stages of the planning process, indicative corridors are shown on the map as a specific solution or line route has not yet been decided on. A full list of projects and their corresponding stage of development is given in Appendix B.

33 The process of network development is described in section 2. Further information on the stage of the project is available in Appendix A.
Figure 6–1 Planned Network Developments in Parts 1, 2 and 3 (not including NW of NI Reinforcement)
Figure 6-2 North West of NI Large Scale reinforcement – potential options
Figure 6-3 Planned NIE Networks asset replacement projects
7 PROJECT DESCRIPTION

7.1 Overview

As described in Chapter 1, planned development projects are categorised on a planning area basis, as per Figure 1–1. Asset replacement projects are listed together as these are the responsibility of NIE Networks and are not subject to SONI’s grid development process. There are 5 individual projects that are in, or have the potential to be in, both planning areas. These projects are listed in Table B–1 in Appendix B.

Projects of pan-European and regional significance in, or partly in, Northern Ireland are identified in ENTSO-E’s most recent TYNDP and RegIP documents. Such projects are identified in this TDPNI using the following labels: “EU TYNDP/ TYNDP_Project_No” or “EU RegIP/ RegIP_Project_No” and are listed in Appendix C.
7.2 Asset Replacement Projects

NIE Networks’ asset replacement projects (in both areas) are detailed below. Projects with a completion date beyond 2024 are indicative as they are subject to the outcome of NIE Networks’ RP7 price control.

Ballylumford Switchgear Replacement

The existing 110 kV switchgear at Ballylumford is to be replaced with a new 110 kV GIS double busbar and the 110 kV circuits diverted accordingly. The need for this project arises from the age, condition and obsolescence of the existing equipment as well as the need for a higher short circuit rating. **Completion date: Winter 2023.**

Ballymena Transformer 3 and 4 Replacement

The 110/33 kV transformers TX 3 and 4 at Ballymena Main are to be replaced due to the condition of the assets. **Completion date: 2020.**

Castlereagh Inter-Bus Transformer 1 Replacement

The 275/110 kV 240 MVA interbus transformer IBTx 1 at Castlereagh is to be replaced due to the age and condition of the existing transformer. **Completion date: By 2024.**

Coolkeeragh – Magherafelt 275 kV Circuits Refurbishment

The need for this project arises from the condition and rating of the existing conductor on the double circuit tower line, originally installed in the 1960s. Under certain scenarios there is a risk of overloading the existing conductor. The rating of the replacement conductor will be increased to cater for increased generation and will be defined as part of the redesign of the circuit. **Completion date: Winter 2022.**

Donegall Main (North) Transformer Replacement

The 60 MVA transformer Tx B at Donegall North is to be replaced by a new 90 MVA unit. The need for this arises because of the condition of the asset. The
rating of 90 MVA is the standard rating now procured for 110/33 kV transformer applications. **Completion date: 2021.**

Enniskillen Main Transformer 1 and 2 Replacement
The 110/33 kV transformers TX 1 and 2 are to be replaced due to the condition of the assets. **Completion date: by 2024.**

Glengormley Main Transformer Tx B Replacement
The 110/33 kV transformer Tx B is to be replaced due to the condition of the asset. **Completion date: 2022.**

Hannahstown 110 kV Disconnectors Replacement
The 110 kV disconnectors at Hannahstown are to be replaced due to the condition of the assets. **Completion date: 2020.**

Hannahstown 275 kV Structures, Busbars and Disconnectors Replacement
The 275 kV structures, busbars and disconnectors at Hannahstown are to be replaced due to the age and condition of the existing assets. **Completion date:** Summer 2022.

Hannahstown Inter–Bus Transformer 1 and 2 Replacement
The 275/110 kV 240 MVA interbus transformers IBTx 1 and 2 at Hannahstown are to be replaced due to the condition of the existing transformers. **Completion date:** After 2024.

Kells and Tandragee Shunt Reactor Replacement
Kells TR1 and Tandragee TR2 shunt reactors are to be replaced due to the age and condition of the existing assets. **Completion date: by 2024.**

Limavady Main 110 kV Refurbishment
The 110 kV mesh at Limavady Main is to be refurbished due to the condition and
rating of the existing assets. Consideration will also be given to the installation of a double busbar AIS or GIS switchboard. **Completion date: by 2024.**

Strabane Main 110kV Refurbishment

The 110 kV mesh at Strabane Main is to be refurbished due to the condition of the existing assets. Consideration will also be given to the installation of an AIS or GIS switchboard. **Completion date: by 2024.**

RP6 275 kV Tower Maintenance

This project includes maintenance of 275 kV towers and condition assessment of towers and foundations. **Completion date: Before 2024.**

RP6 110 kV Tower and Overhead Line Maintenance

This project includes conductor replacement on some 110 kV spans, wood pole replacement, tower maintenance and tower and foundation condition assessments. **Completion date: Before 2024.**

RP6 110 kV Cable Maintenance

This project includes 110 kV cable refurbishment, cable flushing and maintenance of ancillaries. **Completion date: Before 2024.**

RP6 110 kV Transmission Protection

This project includes replacement, maintenance and upgrading of protection at 110 kV substations. **Completion date: Before 2024.**

RP6 275 kV Transmission Protection

This project includes replacement, maintenance and upgrading of protection at 275 kV substations. **Completion date: Before 2024.**

Miscellaneous RP6 Works

This includes a number of small, within–station works including asbestos removal,
concrete refurbishment, transformer bunding, station electrical systems, civil works, painting, earthing transformer replacement, transformer cooler replacement, security upgrades, health and safety upgrades, and provision of spares. This work is to be completed within the RP6 period and thus should be completed by 2024.

Ballylumford 275 kV CVT Replacement

The Capacitor Voltage Transformers (CVTs) on a number of 275 kV circuits at Ballylumford are to be replaced due to the age and condition of the existing assets. **Completion date: After 2024.**

Banbridge Main Transformer 1, 2, 3 and 4 Replacement

The 110/33kV transformers Tx 1–4 at Banbridge Main are to be replaced due to the age and condition of the existing transformers. **Completion date: After 2024.**

Castlereagh 275 kV Structures, Busbars and Disconnectors Replacement

The 275 kV structures, busbars and disconnectors at Castlereagh are to be replaced due to the age and condition of the existing assets. **Completion date: After 2024.**

Castlereagh Interbus Transformer 3 Replacement

The 275/110 kV 240 MVA interbus transformer IBTx 3 at Castlereagh is to be replaced due to the condition of the asset. **Completion date: After 2024.**

Coolkeeragh 275 kV Structures, Busbars and Disconnectors Replacement

The 275 kV structures, busbars and disconnectors at Coolkeeragh are to be replaced due to the condition of the existing assets. **Completion date: After 2024.**

Coolkeeragh 110 kV Disconnectors Replacement

The 110 kV disconnectors at Coolkeeragh are to be replaced due to the condition of the existing assets. **Completion date: After 2024.**
Hannahstown 110 kV Current Transformers Replacement
All of the 110 kV Current Transformers (CTs) at Hannahstown are to be replaced due to the condition of the assets. **Completion date: After 2024.**

Kells 275 kV Structures, Busbars and Disconnectors Replacement
The 275 kV structures, busbars and disconnectors at Kells are to be replaced due to the condition of the existing assets. **Completion date: After 2024.**

Kilroot 275 kV CVT Replacement
The Capacitor Voltage Transformers (CVTs) on the 275 kV circuits at Kilroot are to be replaced due to the condition of the existing assets. **Completion date: After 2024.**

Magherafelt 275 kV Structures, Busbars and Disconnectors Replacement
The 275 kV structures, busbars and disconnectors at Magherafelt are to be replaced due to the condition of the existing assets. **Completion date: After 2024.**

Rathgael 110 kV Structures and Disconnectors Replacement
The 110 kV structures and disconnectors at Rathgael are to be replaced due to the condition of the existing assets. **Completion date: After 2024.**

Tandragee Inter-Bus Transformer 1 and 2 Replacement
The 275/110 kV 240 MVA interbus transformers IBTx 1 and 2 at Tandragee are to be replaced due to the age and condition of the existing transformers. **Completion date: After 2024.**

Tandragee 275 kV Structures and Disconnectors Replacement
The 275 kV structures and disconnectors at Hannahstown are to be replaced due to the age and condition of the existing assets. **Completion date: After 2024.**
RP7 275 kV Tower and Overhead Line Maintenance
This project includes maintenance of 275 kV towers and lines and condition assessment of towers and foundations. **Completion date: After 2024.**

RP7 110 kV Tower and Overhead Line Maintenance
This project includes conductor replacement on some 110 kV spans, wood pole replacement, tower maintenance and tower and foundation condition assessments. **Completion date: After 2024.**

RP7 110 kV Cable Maintenance
This project includes 110 kV cable refurbishment, cable flushing and maintenance of ancillaries. **Completion date: After 2024.**

RP7 110 kV Transmission Protection
This project includes replacement, maintenance and upgrading of protection at 110 kV substations. **Completion date: After 2024.**

RP7 275 kV Transmission Protection
This project includes replacement, maintenance and upgrading of protection at 275 kV substations. **Completion date: After 2024.**

Miscellaneous RP7 Works
This includes a number of small, within-station works including station electrical station upgrades, auxiliary transformer replacement, transformer cooler replacement, refurbishment of earthing systems, health and safety upgrades, transformer bunding, civil works, and provision of spares. This work is to be completed within the RP7 period and thus should be completed **after 2024.**
7.3 The North and West Planning Area

The North and West Planning Area Overview

The North and West planning area comprises all areas connected to the transmission system north and west of the 275 kV double circuit ring around Lough Neagh, and the 275 kV connection with Louth station in Ireland.

2027 Forecast Regional Generation and Demand Balance

Regional Generation/ Demand Balance

- Generation: 1708 MW
- Demand: 734 MW

Summary of TDPNI Projects

<table>
<thead>
<tr>
<th>TDPNI project category</th>
<th>No. of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Build</td>
<td>9</td>
</tr>
<tr>
<td>Uprate/ Modify</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Regional Description

34 The Forecast Regional Generation and Demand Balance is based on peak Demand levels published in GCS 2017, and the Generation figures published in the TYTFS 2017.
This area is characterised by a significant amount of wind generation connected to the 110 kV network and has more generation than demand. Conventional generation in this area is provided by Coolkeeragh Power Station, connected to the main 275 kV ring by a double circuit spur line which crosses the Sperrin mountains from Magherafelt.

There are two cross-border connections on the 110 kV system, connecting Strabane with Letterkenny in County Donegal and Enniskillen with Corraclasy in County Cavan. Cross-border power flows are managed by power flow controllers (PFCs).

There is limited high capacity 275 kV infrastructure in this area, and currently little or no spare capacity for generation on the 110 kV system.

The planning area has considerably more generation than demand.

The excess of generation in the area is set to increase in the coming years. This is due to generators that currently have live connection offers connecting to the transmission and distribution networks.

To cater for the high levels of generation described above, network reinforcement is necessary. This will enable the efficient export of generation from this area towards areas with high load, such as the South-East.

There are also reinforcement needs due to local constraints related to a shortage of transmission capacity and voltage support.

The projects described in this section will enable the transmission network to safely accommodate the more diverse power flows which are a result of excess regional generation. This project list is not definitive and will be updated in future TDPs to reflect the changing nature and understanding of the needs of the power system.

They will also provide benefits to existing and future users of the transmission network in the planning area and facilitate broad future regional load growth.
The 17 development projects in the North and West planning area are discussed in more detail below. The status of the network development projects is noted in Appendix B.

Please refer to Figures 6-1 and 6-2 for locational information of planned Network Developments in the North and West Planning Area.

7.3.1 Renewable Generation Cluster Substations and New Connections

Agivey 110/33 kV Cluster
The driver of this project is RES integration. It is planned to establish a 110/33 kV cluster substation near Garvagh to allow connection of new wind generation. This will be connected to the existing 110 kV Brockaghboy to Rasharkin overhead line. **Completion date: Winter 2020.**

Gort 110/33 kV 2nd Transformer (NEW)
The driver of this project is RES integration and security of supply. A reduction in local demand and increase in small scale generation on the distribution system connected to Omagh Main means that there is a risk of overload from a wind farm connected to this system. This project will involve the installation of a second 110/33 kV transformer at Gort to allow the transfer of a nearby wind farm to Gort. **Completion date: Summer 2022.**

7.3.2 Renewable Integration Developments

Coolkeeragh Reactive Compensation (NEW)
The drivers of this project are security of supply and RES integration. The development of a specific demand connection in the North West of Northern Ireland has resulted in a need for voltage support. **Completion date: Winter 2023.**
Coolkeeragh - Killymallaht 110 kV Uprate

The drivers for this project are security of supply and RES integration. As a result of increasing growth in renewable generation in the northwest of NI there will be a need to uprate the 110 kV circuit between Coolkeeragh and Killymallaht.

Completion date: 2028

Coolkeeragh - Magherafelt 275 kV Switchgear (NEW)

The drivers of this project are RES integration and security of supply. During periods of high generation in the North West, there is a risk that in the event of a double circuit fault on the 275 kV line between Coolkeeragh and Magherafelt its auto-reclose facility would be inhibited. This project involves installing single phase tripping and high speed auto-reclose circuit breakers on these circuits to allow rapid reinstatement following a transient fault and minimise the associated risk.

Completion date: 2024.

Coolkeeragh - Strabane 110 kV Uprate

The drivers for this project are security of supply and RES integration. As a result of increasing growth in renewable generation in the northwest of NI there will be a need to uprate the 110 kV circuit between Coolkeeragh and Strabane. Completion date: 2028

Coolkeeragh - Trillick New 110 kV Circuit

The drivers for this project are security of supply, RES integration and market integration. A need has been identified to strengthen the electricity network on both sides of the border in the north-west to assist in the integration of renewable power sources. This project will interact with the North West of NI Reinforcement (see below) and the scope of the solution required to be delivered through that project. Completion date: 2027.
Creagh/Kells–Rasharkin New 110 kV Circuit

The drivers of this project are security of supply and RES integration. As a result of increasing growth in renewable generation there will be a need to construct a second 110 kV circuit between either Creagh or Kells and Rasharkin 110/33 kV cluster substation. **Completion date: Winter 2026.**

Killymallaght – Strabane 110 kV Uprate

The drivers for this project are security of supply and RES integration. As a result of increasing growth in renewable generation in the northwest of NI there will be a need to uprate the 110 kV circuit between Killymallaght and Strabane. **Completion date: 2028**

North West of NI 110 kV reinforcement

The drivers for this project are security of supply and RES integration. As a result of increasing growth in renewable generation in the northwest and potential for voltage instability there will be a need to reinforce the 110 kV transmission system near Rasharkin, Coleraine, Limavady and the proposed Agivey cluster. As well as likely uprating of the circuits from Coolkeeragh to Limavady, the new circuit options to be investigated as part of this project will include:

- 110 kV circuit from Agivey cluster – Limavady; and
- 110 kV circuit from Coleraine – Rasharkin.

Completion expected after 2026.

North West of NI Large-scale Reinforcement

The drivers for this project are security of supply and RES integration. As a result of increasing growth in renewable generation in the west there will be a need to construct a new circuit between the 275 kV system and the 110 kV system electrically close to Coolkeeragh.
A long list of options shall be narrowed down to a short list. A combination of these may be required. The long list of main and supporting options will include the following:

- HVDC link from Kilroot to Coolkeeragh;
- 275 kV or 110 kV circuit from Magherafelt to Coolkeeragh;
- 275 kV or 110 kV circuit from Magherafelt to Strabane (new s/s); and
- Turleenan – Omagh South – Co. Donegal New 275 kV Line.

These can be seen in Figure 6–2. Completion expected after 2026.

Omagh Main - Dromore Uprate

The drivers of this project are facilitation of a connection and RES integration. With the connection of Curraghamulkin cluster substation to Dromore it is necessary to restring the Omagh Main – Dromore tower line with higher capacity conductor.

Completion date: Summer 2022

Omagh Main - Dromore Third Circuit (NEW)

The drivers of this project are security of supply and RES integration. There is expected to be further connections that will result in a need for reinforcement in addition to the planned uprate of these circuits. This project will involve further reinforcement including the option of the construction of a third circuit to alleviate these expected future constraints. **Completion date: 2028.**

Strabane - Omagh 110 kV Uprate (NEW)

The drivers of this project are RES integration. With increasing generation in the North West there is a risk of overload of the 110 kV circuits between Strabane and Omagh. This project will involve replacement of the conductor on the existing tower lines with new conductor of a higher rating. **Completion date: 2026.**
The drivers for this project are security of supply, RES integration and market integration. A need has been identified to strengthen the electricity network on both sides of the border in the north–west to assist in the integration of renewable power sources. This project is on hold and may be replaced by the North West Reinforcement (see below) but still has Project of Common interest (PCI) status. Completion date: after 2025.

7.3.3 Load Related and Security of Supply

Coolkeeragh T1 Transformer Cabling Uprate

The driver for this project is security of supply. The increase in wind generation in the north–west of NI has resulted in an increase in power flows at Coolkeeragh. The project is to uprate the 110 kV cabling associated with Transformer 1 in order to accommodate these flows. Completion date: Winter 2021.

East Tyrone Reinforcement Project (NEW)

The driver for this project is security of supply. The driver of this project is security of supply. NIE Networks and SONI are jointly assessing the level of security of supply on the distribution system supplying Cookstown and the 110/33 kV substation at Dungannon. It is forecast that demand will exceed capacity at the existing Dungannon 110/33 kV substation. In addition there is a particular risk to supplies following a second circuit outage. Options being considered include:

- Installation of a 2\(^{nd}\) Transformer at Tremoge as well a further distribution circuitry from Trimoge to Cookstown;
- Construction of a 2\(^{nd}\) 110/33 kV substation at Dungannon;
• Establishing a new 110/33 kV substation at Cookstown with new 110 kV circuits from Dungannon, Tremoge or Tamnamore.

Completion date: Winter 2022.

North West Special Protection Scheme Upgrade

The drivers of this project are security of supply and RES integration. This scheme was installed to protect the network in the north-west in the event of faults on the 275 kV network before the large-scale installation of wind generation in the north and west of NI. As wind generation capacity has increased, a need has been identified to replace and upgrade the existing special protection scheme.

Completion date: Winter 2019.
7.4 The South-East Planning Area

The South-East Planning Area Overview

The South-East planning area comprises all areas within the 275 kV double circuit ring around Lough Neagh, as well as Greater Belfast, South Antrim and County Down.

2027 Forecast Regional Generation and Demand Balance

Regional Generation/ Demand Balance

<table>
<thead>
<tr>
<th>Generation</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1058 MW</td>
<td>1065 MW</td>
</tr>
</tbody>
</table>

Summary of TDPNI Projects

<table>
<thead>
<tr>
<th>TDPNI project category</th>
<th>No. of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Build</td>
<td>9</td>
</tr>
<tr>
<td>Uprate/Modify</td>
<td>7</td>
</tr>
<tr>
<td>Combined Uprate/Modify/Refurbish/Replace</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
</tr>
</tbody>
</table>

Regional Description

This area is characterised by its relatively high demand, particularly in the Greater
Belfast area. There are two large conventional power stations; Ballylumford near Larne and Kilroot near Carrickfergus. Wind generation makes up a small proportion of installed capacity.

There is one cross-border connection on the 275 kV system, connecting Tandragee with Louth. The Moyle HVDC interconnector provides a connection between the 275 kV system near Ballylumford with the power system of Great Britain, via Scotland.

There is strong 275 kV infrastructure in this area, with significant spare capacity for generation and demand. In contrast to the North and West area, demand is greater than generation in the South-East.

The development of the transmission network in the area is characterised by the need to meet increasing demand and improve system resilience and flexibility. Investment is required to increase transmission of wind power from the North and West as well as cross-border interconnection.

There are also reinforcement needs due to:

- Local constraints related to a shortage of transmission capacity and voltage support;
- Accommodate further market integration with Ireland.

The projects described in this section will enable the transmission network to safely accommodate the more diverse power flows which are a result of excess regional generation. This project list is not definitive and will be updated in future TDPs to reflect the changing nature and understanding of the needs of the power system. They will also provide benefits to existing and future users of the transmission network in the planning area and facilitate broad future regional load growth.
The 19 development projects in the South-East planning area are discussed in more detail below. The status of the network development projects is noted in Appendix B.

Please refer to Figures 6–1 and 6–2 for locational information of planned Network Developments in the South-East Area in Parts 2 & 3.

7.4.1 Dual Asset Replacement/ Load Related and Security of Supply Projects

Ballylumford–Eden 110 kV Circuit Uprate

The driver for this project is security of supply. The conductor on the existing tower line as well as a number of towers and foundations will be replaced due to the condition and age of the existing assets. The conductor will also be uprated to cater for increased demand. **Completion date: Winter 2022.**

Eden–Carnmoney 110 kV Circuit Uprate/Reconfiguration

The driver for this project is security of supply. The existing conductor is due for replacement due to the age of the assets. This project may involve reconfiguration of the circuits but the full scope will be determined in due course. **Completion date: Winter 2023.**

Carnmoney–Castlereagh 110 kV Circuit Uprate/Reconfiguration

The driver for this project is security of supply. The existing conductor is due for replacement due to the age of the assets. This project may involve reconfiguration of the circuits but the full scope will be determined in due course. **Completion date: Winter 2024.**
7.4.2 Renewable Generation Cluster Substations and New Connections

Kells 110/33 kV Cluster
The driver of this project is RES integration. It is planned to establish a 110/33 kV cluster substation near to the existing Kells 275/110 kV substation to connect new renewable generation to the transmission system. This will be connected to the existing Kells 110 kV station via an underground cable. Completion date: Winter 2020.

Belfast Power Station Connection
The driver of this project is connecting new generation. Belfast Power Ltd. is proposing a new 480 MW CCGT, to be located in Belfast Harbour Estate. The project is in the early stages of development. It is assumed that this power station will connect to the transmission network via underground cable at Castlereagh substation. This project will encompass the connection of the power station to the network. Completion date: TBA.

7.4.3 Renewable Integration Developments

Tamnamore – Turleenan 275 kV Uprate
The drivers of this project are security of supply and RES integration. Pending the establishment of Turleenan substation it is planned to uprate the conductors between Turleenan and Tamnamore 275 kV substation in order to improve inter-region power flow. Completion date: Winter 2023.

Rasharkin Cluster 110/33 kV 2nd Transformer (NEW)
The driver of this project is RES integration and security of supply. Gruig wind farm is currently connected to the distribution system. A reduction in local demand and increase in small scale generation means that there is a risk of overload on this network. This project will involve the installation of a second 110/33 kV
transformer at Rasharkin to allow the transfer of Gruig wind farm to Rasharkin.

Completion date: Summer 2022.
7.4.4 Load Related and Security of Supply

Tandragee 275 kV Second Bus Coupling Circuit Breaker

The driver of this project is security of supply. This project is to install a second busbar coupler onto the existing 275 kV double busbar. This project will improve resilience and redundancy of the protection at Tandragee. **Completion date: Winter 2022.**

Tamnamore - Drumnakelly 110 kV Uprate (NEW)

The driver of this project is security of supply. These circuits may be subject to overload under high wind generation conditions and are operated out of service. This project is to replace the conductor on these circuits with higher capacity conductor. This will allow these circuits to fully return to service. **Completion date: 2027.**

Airport Road 110/33kV substation

The driver of this project is security of supply. It is planned to construct a new 110/33 kV substation in the Belfast Harbour Estate, close to the existing Airport Road 33/6.6 kV substation. The substation will be connected to the existing Rosebank substation via the existing 110 kV tower line (currently operated at 33 kV) from Rosebank to Sydenham Road. The need for this project arises from the increasing load in the Belfast Harbour and city centre area. **Completion date: Winter 2022.**

Castlereagh 275 kV New no. 4 Inter-Bus Transformer

The driver of this project is security of supply. There is a need to provide additional capacity at Castlereagh to meet expected demand growth. **Completion date: Winter 2022.**

Castlereagh, Tandragee and Hannahstown Reactors

The driver of this project is security of supply. Further shunt reactors are planned.
to be installed at Castlereagh, Tandragee and Hannahstown substations in order to improve voltage regulation when the network is lightly loaded. **Completion date:** 2022.

Drumnakelly and Armagh Reinforcement

The driver of this project is security of supply. There is a need to reinforce the distribution system supplying Armagh city and the surrounding area due to increasing demand. It is also forecast that demand will exceed capacity at the existing Drumnakelly 110/33 kV substation. Options being considered include:

- Establishing a new 110/33 kV substation adjacent to the existing Drumnakelly Main along with associated 33 kV reinforcements to the Armagh area; and
- Establishing a new 110/33 kV substation at Armagh with new 110 kV circuits from Tandragee or Drumnakelly.

Completion date: 2026.

7.4.5 Fault Level Replacements

Castlereagh 110 kV Switchgear Replacement

The driver for this project is safety. Due to increasing fault levels it is planned, subject to detailed study, to replace 110 kV circuit breakers and current transformers at Castlereagh. **Completion date:** Summer 2021.

Castlereagh - Knock 110 kV Cables Uprate

The driver for this project is safety. The protection on this circuit will be replaced and uprated as well as the cable sealing ends and a section of cabling. This project is necessary due to the fault level exceeding the short circuit rating of the cable under certain conditions. **Completion date:** Summer 2020.
Cregagh Transformer B Switchgear Replacement and Transformer Realignment

The driver of this project is security of supply. This project is to replace and uprate the 110 kV switchgear on Tx B at Cregagh and to increase the clearance between the two transformers. This project is needed as there is potential for the fault level to exceed the short circuit rating of the equipment under certain conditions. **Completion date: After 2024.**

Tandragee 110 kV Switchgear Replacement

The driver for this project is safety. Due to increasing fault levels it is planned, subject to detailed study, to replace 110 kV circuit breakers and current transformers at Tandragee. **Completion date: Summer 2021**

7.4.6 Interconnection

North–South Interconnector

The drivers for this project are market integration, security of supply and RES integration. This project involves construction of a new 400 kV circuit from existing Woodland 400 kV station in County Meath (Ireland) to a proposed 400/275 kV station at Turleenan in County Tyrone (Northern Ireland). This project is needed to remove constraints within the single electricity market, improve security of supply and facilitate safe and secure operation of the power system with high renewable penetration levels. **Completion date: Winter 2023.**

Moyle 275 kV Reinforcement (NEW)

The drivers for this project are market integration, security of supply and RES integration. At present, full utilisation of the 500 MW export capability of the Moyle Interconnector is prevented by the potential for network overloads in the event of the loss of the 275 kV double circuit between the Moyle converter station at Ballycronan More and the nearby Ballylumford substation. This project involves works to allow reconfiguration of the connection to Moyle to address this
contingency. It will be subject to cost–benefit analysis before proceeding.

Completion date: 2028.
7.5 Projects in Both Planning Areas

Enhancement to the Low Frequency Load Disconnection Scheme

It is planned to modify existing under-frequency automatic load shedding schemes to prevent tripping of distribution-connected windfarms. **Completion date: Summer 2022.**

Augmentation of Capacity at Transmission/Distribution Interface

It is planned to increase 110/33 kV transformer capacity at four substations; Coleraine, Strabane, Limavady and Omagh. This capacity will be increased either by uprating transformers or by the installation of an additional transformer. **Completion date: Winter 2025.**

CVT Upgrade for Harmonic Measurement

It is planned to replace Capacitor Voltage Transformers (CVTs) at a number of sites with models capable of power quality monitoring, in order to improve monitoring of power system harmonics. **Completion date: Summer 2022.**

Filter Tuning/Replacement

The driver of this project is security of supply. With increasing use of cable on the transmission system as well as an increase in non-linear load and generation, harmonic levels on the transmission system are increasing. This project will analyse the requirement for harmonic filters and re-tune/augment these accordingly. **Completion date: 2025.**

22 kV Switchgear Uprates

It is planned to uprate the 22 kV switchgear on the tertiary windings of a number of 275/110 kV transformers. The exact number of sites and scope of the work is yet to be determined. **Completion date: 2024.**
8 ENVIRONMENTAL APPRAISAL REPORT OF TDPNI 2019–2028

An Environmental Appraisal Report (EAR) has been prepared as an accompanying document to this TDPNI. The purpose of the EAR is to ensure the TDPNI 2019–2028 is in line with committed strategic environmental objectives (SEO). These objectives were set out in the Strategic Environmental Assessment (SEA) prepared for TDPNI 2018–2027 and integrated into the overall approach to grid development. A series of environmental, planning, social and technical policies and objectives guide sustainable Grid development.

As outlined in the earlier sections, this TDPNI includes 41 reinforcement projects. Of these, 9 projects are new to TDPNI 2019 and therefore were not considered in the environmental appraisal carried out for TDPNI 2018–2027 or as part of the SEA process.

These new projects consist of new build projects and uprate/modification projects. These projects are examined in the EAR and evaluated against the SEOs. Following the implementation of mitigation measures (where necessary) the SEOs will be achieved.

Therefore we consider TDPNI 2019–2028 to be in accordance with the provisions of the Strategic Environmental Obligations as set out in TDPNI 2018–2027 and associated SEA.
APPENDIX A: PROJECT TERMS

This appendix explains terms that are used to describe projects in the following appendices.

Estimated Completion Date (ECD): the estimates provided are subject to:

- The planning process where applicable;
- The construction progress; and
- Availability of transmission outages and commissioning; and
- May be liable to change.

Project Capex: The anticipated capital expenditure associated with a project, comprising the combined total of the TSO (SONI) and TAO (NIE Networks) costs.

Stage: the stage the project has progressed to on the data freeze date.

The SONI approach to project development consists of three parts, namely:

- **Part 1 – Planning**
- **Part 2 – Outline Design**
- **Part 3 – Consents**

Once projects have progressed beyond Part 3, they are handed over to NIE Networks for construction. These projects are marked as **NIE Networks** within the tables below.

Asset replacement projects are carried out by NIE Networks outside SONI’s Grid Development Process. These are marked as **AR** in the tables below.
APPENDIX B: PLANNED NETWORK DEVELOPMENTS

This appendix details active TDPNI 2018 projects and their driver(s), need(s), location, stage and ECD, as at the data freeze date 01 January 2018. Projects are categorised by planning area.

Please note the following label:

- “EU TYNDP/ TYNDP_Project_No” or “REG RegIP/ RegIP_Project_No” included with a project’s title signifies that it is in ENTSO-E’s most recent TYNDP or RegIP North Sea. Projects included in the TYNDP are projects of pan-European significance. Projects included in the RegIP North Sea are projects of regional significance. These projects are listed in Appendix C; and

- “*” included with a project’s length signifies that the circuit length is an estimate at this time.

35 Some projects are in, or have the potential to be in, both planning areas
NIE Networks Asset Replacement Projects

There are 39 projects in NIE Networks’ Asset Replacement Plan; these projects are listed in Table B-1 below.

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>Security of Supply</th>
<th>RES Integration</th>
<th>Market Integration</th>
<th>Inter-Regional</th>
<th>Local Constraints</th>
<th>Connection</th>
<th>Inter-connection</th>
<th>Asset Condition</th>
<th>Project Capex</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballylumford Switchgear Replacement</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£17.4M</td>
<td>2023</td>
</tr>
<tr>
<td>Ballymena Transformer 3 and 4 replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>£1.99M</td>
<td>2020</td>
</tr>
<tr>
<td>Castlereagh inter-bus transformer 1 replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£1.30M</td>
<td>2024</td>
</tr>
<tr>
<td>Coolkeeragh − Magherafelt 275 kV Circuits Refurbishment</td>
<td>Refurbish/ Replace</td>
<td>56</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£30M[36]</td>
<td>2022</td>
</tr>
<tr>
<td>Donegall Main (North) transformer replacement</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£1.0M</td>
<td>2021</td>
</tr>
<tr>
<td>Enniskillen Main Transformer 1 and 2 replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£2.1M</td>
<td>2024</td>
</tr>
<tr>
<td>Glengormley Main Transformer B Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£1.2M</td>
<td>2022</td>
</tr>
<tr>
<td>Hannahstown 110 kV Disconnectors Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£0.9M</td>
<td>2020</td>
</tr>
<tr>
<td>Hannahstown 275 kV Structures, Busbars and Disconnectors Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£1.2M</td>
<td>2022</td>
</tr>
<tr>
<td>Hannahstown inter-bus transformer 1 and 2 replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£7.0M</td>
<td>2024</td>
</tr>
</tbody>
</table>

\[36\] Currently under pre-construction review by NIE Networks.
<table>
<thead>
<tr>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>Security of Supply</th>
<th>RES Integration</th>
<th>Market Integration</th>
<th>Inter-Regional</th>
<th>Local Constraints</th>
<th>Connection</th>
<th>Inter-connection</th>
<th>Asset Condition</th>
<th>Project Capex</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kells and Tandragee Shunt Reactor Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£1.4M</td>
<td>2024</td>
</tr>
<tr>
<td>Limavady Main 110kV refurbishment</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£1.47M</td>
<td>2024</td>
</tr>
<tr>
<td>Strabane Main 110kV refurbishment</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£2.55M</td>
<td>2024</td>
</tr>
<tr>
<td>RP6 275 kV Tower Maintenance</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£8.3M</td>
<td>2024</td>
</tr>
<tr>
<td>RP6 110 kV Tower and Overhead Line Maintenance</td>
<td>Refurbish/ Replace</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£9.4M</td>
<td>2024</td>
</tr>
<tr>
<td>RP6 110 kV Cable Maintenance</td>
<td>Refurbish/ Replace</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£1M</td>
<td>2024</td>
</tr>
<tr>
<td>RP6 110 kV Protection</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£1.4M</td>
<td>2024</td>
</tr>
<tr>
<td>RP6 275 kV Protection</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£2.7M</td>
<td>2024</td>
</tr>
<tr>
<td>Miscellaneous RP6 Works</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£4.8M</td>
<td>2024</td>
</tr>
<tr>
<td>Ballylumford 275 kV CVT Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£0.2M</td>
<td>>2024</td>
</tr>
<tr>
<td>Banbridge Main transformer 1, 2, 3 and 4 replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£1.94M</td>
<td>>2024</td>
</tr>
<tr>
<td>Castlereagh 275 kV Structures, Busbars and Disconnectors Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£3.75M</td>
<td>>2024</td>
</tr>
<tr>
<td>Castlereagh inter-bus transformer 3 replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£3.5M</td>
<td>>2024</td>
</tr>
<tr>
<td>Coolkeeragh 275 kV Structures, busbars and Disconnectors Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£3.5M</td>
<td>>2024</td>
</tr>
<tr>
<td>Coolkeeragh 110 kV Disconnectors Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£1.3M</td>
<td>>2024</td>
</tr>
<tr>
<td>Hannaehstown 110 kV Current Transformers Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£0.5M</td>
<td>>2024</td>
</tr>
<tr>
<td>Kells 275 kV Structures, Busbars and Disconnectors Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>£3.25M</td>
<td>>2024</td>
</tr>
<tr>
<td>Project Title</td>
<td>Type</td>
<td>km</td>
<td>Security of Supply</td>
<td>RES Integration</td>
<td>Market Integration</td>
<td>Inter-Regional</td>
<td>Local Constraints</td>
<td>Connection</td>
<td>Inter-connection</td>
<td>Asset Condition</td>
<td>Project Capex</td>
<td>ECD</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>----</td>
<td>--------------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>Kells and Hannahstown Shunt Reactor Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£1.53M</td>
<td>2027</td>
</tr>
<tr>
<td>Kilroot 275 kV CVT Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£0.2M</td>
<td>>2024</td>
</tr>
<tr>
<td>Magherafelt 275 kV Structures, Busbars and Disconnectors Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£3.5M</td>
<td>>2024</td>
</tr>
<tr>
<td>Rathgael 110 kV Structures and Disconnectors Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£0.25M</td>
<td>>2024</td>
</tr>
<tr>
<td>Tandragee inter-bus transformer 1 and 2 replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£7M</td>
<td>>2024</td>
</tr>
<tr>
<td>Tandragee 275 kV Structures and Disconnectors Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>£3.5M</td>
<td>>2024</td>
</tr>
<tr>
<td>RP7 275 kV Tower and Overhead Line Maintenance</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>£8M<sup>37</sup></td>
<td>>2024</td>
</tr>
<tr>
<td>RP7 110 kV Tower and Overhead Line Maintenance</td>
<td>Refurbish/ Replace</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>£9M<sup>38</sup></td>
<td>>2024</td>
</tr>
<tr>
<td>RP7 110 kV Cable Maintenance</td>
<td>Refurbish/ Replace</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>£1M<sup>38</sup></td>
<td>>2024</td>
</tr>
<tr>
<td>RP7 110 kV Protection</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>£1.4M<sup>39</sup></td>
<td>>2024</td>
</tr>
<tr>
<td>RP7 275 kV Protection</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>£2.7M<sup>39</sup></td>
<td>>2024</td>
</tr>
<tr>
<td>Miscellaneous RP7 works</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>£3.2M<sup>19</sup></td>
<td>>2024</td>
</tr>
</tbody>
</table>

³⁷ These figures are estimates based on RP6
Projects in the North and West Planning Area

There are 17 development projects in the North and West Planning Area; these projects are listed in Table B-2 below.

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>DRIVERS</th>
<th>NEEDS</th>
<th>Stage (Part)</th>
<th>Project Capex</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agivey 110/33 kV Cluster</td>
<td>New Build</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3</td>
<td>n/a 2020</td>
</tr>
<tr>
<td>Gort 110/33 kV 2nd Transformer (NEW)</td>
<td>New Build</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1</td>
<td>£1.5M 2022</td>
</tr>
<tr>
<td>Coolkeeragh Reactive Compensation (NEW)</td>
<td>New Build</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2</td>
<td>£20.87M 2023</td>
</tr>
<tr>
<td>Coolkeeragh ~ Killymallaght 110 kV Uprate</td>
<td>Uprate/Modify</td>
<td>15</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1</td>
<td>n/a 2028</td>
</tr>
<tr>
<td>Coolkeeragh ~ Magherafelt 275 kV Switchgear (NEW)</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1</td>
<td>£2.12M 2024</td>
</tr>
<tr>
<td>Coolkeeragh ~ Strabane 110 kV Uprate</td>
<td>Uprate/Modify</td>
<td>27</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1</td>
<td>n/a 2028</td>
</tr>
</tbody>
</table>

Cluster substation projects are funded according to the NIE Networks “Statement of Charges For Connection to Northern Ireland Electricity Networks’ Distribution System” – http://www.nienetworks.co.uk/documents/connections/statement-of-charges

This project is at an early stage and final costs are not yet known. Costs provided are provisional.
<table>
<thead>
<tr>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>DRIVERS</th>
<th>NEEDS</th>
<th>Stage (Part)</th>
<th>Project Capex</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolkeeragh ~ Trillick new 110 kV Circuit</td>
<td>New Build</td>
<td>16</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>£8.9M</td>
<td>2025</td>
</tr>
<tr>
<td>Creagh/Kells~Rasharkin New 110 kV Circuit</td>
<td>New Build</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>£21.8M</td>
<td>2026</td>
</tr>
<tr>
<td>Killymallaght ~ Strabane 110 kV Uprate</td>
<td>Uprate/Modify</td>
<td>11</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>n/a</td>
<td>2028</td>
</tr>
<tr>
<td>North West of NI 110 kV Reinforcement</td>
<td>New Build</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>£30M</td>
<td>>2026</td>
</tr>
<tr>
<td>North West of NI Large-scale Reinforcement</td>
<td>New Build</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>£170M</td>
<td>>2026</td>
</tr>
<tr>
<td>Omagh Main ~ Dromore Uprate</td>
<td>Uprate/Modify</td>
<td>9</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>£4.4M</td>
<td>2022</td>
</tr>
<tr>
<td>Omagh Main ~ Dromore Third Circuit (NEW)</td>
<td>New Build</td>
<td>9</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>n/a</td>
<td>2028</td>
</tr>
<tr>
<td>Strabane ~ Omagh 110 kV Uprate (NEW)</td>
<td>Uprate/Modify</td>
<td>36</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>£5M</td>
<td>2026</td>
</tr>
<tr>
<td>Coolkeeragh T1 Transformer cabling uprate</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>£0.6M</td>
<td>2021</td>
</tr>
<tr>
<td>East Tyrone Reinforcement Project (NEW)</td>
<td>New Build</td>
<td>TBC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>£1.6M</td>
<td>2022</td>
</tr>
<tr>
<td>North West Special Protection Scheme upgrade</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>£0.4M</td>
<td>2019</td>
</tr>
</tbody>
</table>
Projects in the South–East Planning Area

There are 19 development projects in the South–East Planning Area; these projects are listed in Table B–3 below.

Table B–3 Planned Projects in the South–East Planning Area (19 Projects)

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>New Connection</th>
<th>Security of Supply</th>
<th>RES Integration</th>
<th>Inter–Regional Power Flow</th>
<th>Local Constraints</th>
<th>Inter–connection</th>
<th>Connection</th>
<th>Stage (Part)</th>
<th>Project Capex</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballylumford–Eden 110 kV Circuit Uprate</td>
<td>Refurbish/Replace/Upate/Modify</td>
<td>15</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>£9.5M</td>
<td>2022</td>
</tr>
<tr>
<td>Eden–Carnmoney 110 kV Circuit Uprate/Reconfiguration</td>
<td>Refurbish/Replace/Upate/Modify</td>
<td>12</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>£7.9M</td>
<td>2023</td>
</tr>
<tr>
<td>Project Title</td>
<td>Type</td>
<td>km</td>
<td>New Connection</td>
<td>Security of Supply</td>
<td>RES Integration</td>
<td>Market Integration</td>
<td>Inter-Regional Power Flow</td>
<td>Local Constraints</td>
<td>Connection</td>
<td>Inter-connection</td>
<td>Asset Condition</td>
<td>Stage (Part)</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>----</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Carnmoney–Castlereagh 110 kV Circuit Upate/Reconfiguration</td>
<td>Refurbish/Replace/Upate/Modify</td>
<td>25</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>1</td>
<td>£28.5M</td>
<td>2024</td>
</tr>
<tr>
<td>Kells 110/33 kV Cluster</td>
<td>New Build</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>N/A<sup>40</sup></td>
<td>2020</td>
</tr>
<tr>
<td>Belfast Power Station Connection</td>
<td>New Build</td>
<td>~14</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>N/A<sup>41</sup></td>
<td>>TBA</td>
</tr>
<tr>
<td>Tamnamore – Turleenan 275 kV Upate</td>
<td>Uprate/Modify</td>
<td>5</td>
<td>✓ ✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>£4.3M</td>
<td>20232</td>
</tr>
<tr>
<td>Rasharkin Cluster 110/33 kV 2<sup>nd</sup> Transformer (NEW)</td>
<td>New Build</td>
<td>0</td>
<td>✓ ✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>£1.7M</td>
<td>2022</td>
</tr>
</tbody>
</table>

⁴⁰ Cluster substation projects are funded according to the NIE Networks “Statement of Charges For Connection to Northern Ireland Electricity Networks’ Distribution System” – http://www.nienetworks.co.uk/documents/connections/statement-of-charges

⁴¹ This project is at a very early stage and costs are not yet known.
<table>
<thead>
<tr>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>New Connection</th>
<th>Security of Supply</th>
<th>RES Integration</th>
<th>Market Integration</th>
<th>Inter-Regional Power Flow</th>
<th>Local Constraints</th>
<th>Connection</th>
<th>Inter-connection</th>
<th>Stage (Part)</th>
<th>Project Capex</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tandragee 275 kV second bus coupling circuit breaker</td>
<td>Uprate/</td>
<td>0</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>£2.1M</td>
<td>20221</td>
</tr>
<tr>
<td></td>
<td>Modify</td>
<td></td>
</tr>
<tr>
<td>Tamnamore – Drumnakelly 110 kV Uprate (NEW)</td>
<td>Uprate/</td>
<td>22</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>TBA42</td>
<td>2027</td>
</tr>
<tr>
<td></td>
<td>Modify</td>
<td></td>
</tr>
<tr>
<td>Airport Road Main 110/33 kV substation</td>
<td>New Build</td>
<td>0</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>£6.8M</td>
<td>2022</td>
</tr>
<tr>
<td>Castlereagh 275 kV new no. 4 inter–bus transformer</td>
<td>New Build</td>
<td>0</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>£10.7M</td>
<td>2022</td>
</tr>
<tr>
<td>Castlereagh, Tandragee and Hannahstown Reactors</td>
<td>New Build</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>£3.6M</td>
<td>202224</td>
</tr>
<tr>
<td>Drumnakelly and Armagh Development Plan</td>
<td>New Build</td>
<td>17</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>£24.9M</td>
<td>20267</td>
</tr>
<tr>
<td>Castlereagh and Tandragee 110 kV Switchgear replacement</td>
<td>Uprate/</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>£7.1M</td>
<td>2021</td>
</tr>
<tr>
<td></td>
<td>Modify</td>
<td></td>
</tr>
</tbody>
</table>

42 This project is at a very early stage and costs are not yet known.
<table>
<thead>
<tr>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>New Connection</th>
<th>Security of Supply</th>
<th>RES Integration</th>
<th>Market Integration</th>
<th>Inter-Regional Power Flow</th>
<th>Local Constraints</th>
<th>Connection</th>
<th>Inter-connection</th>
<th>Asset Condition</th>
<th>Stage (Part)</th>
<th>Project Capex</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castlereagh – Knock 110 kV cables uprate</td>
<td>Uprate/Modify</td>
<td>5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIE Networks</td>
<td></td>
<td>£1.2M</td>
<td>2021</td>
</tr>
<tr>
<td>Tandragee 110 kV Switchgear replacement</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>£3.3M</td>
<td>2021</td>
</tr>
<tr>
<td>Cregagh Transformer B Switchgear Replacement and Transformer B Realignment</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>£1.3M</td>
<td>2022</td>
</tr>
<tr>
<td>North South 400 kV Interconnection Development (EU TYNDP/ 81)</td>
<td>New Build</td>
<td>137</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>3</td>
<td>£116.3M</td>
<td>2023</td>
</tr>
<tr>
<td>Moyle 275 kV Reinforcement (NEW)</td>
<td>New Build</td>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>1</td>
<td>£4.1M</td>
<td>2028</td>
</tr>
</tbody>
</table>

43 The total length is 137 km: 103 km in Ireland and 34 km in Northern Ireland

44 Included in this amount are the costs associated with obtaining planning consent plus the cost of developing the new substation at Turleenan and the cost of looping the existing 275kV double circuit overhead line into that new substation. Together these will amount to some tens of millions of pounds. A detailed breakdown of the cost estimates cannot be provided however as that has the potential to compromise the competitive tendering process for the services and material required to complete the development.

45 Since the freeze date the estimate completion date of this project has changed to winter 2023
Projects in Both Planning Areas:

There are 5 development projects that are in multiple Planning Areas; these projects are listed in Table B-4 below.

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>Security of Supply</th>
<th>RES Integration</th>
<th>Inter-Regional Power Flow</th>
<th>Local Constraints</th>
<th>Connection</th>
<th>Inter-connection</th>
<th>Asset Condition</th>
<th>Stage (Part)</th>
<th>Project Capex</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhancement to the low frequency load disconnection scheme</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>£0.9M</td>
<td>2022</td>
</tr>
<tr>
<td>Augmentation of capacity at Transmission/Distribution interface</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>£3M</td>
<td>2025</td>
</tr>
<tr>
<td>CVT Upgrade for Harmonic Measurement</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>£1.1M</td>
<td>2022</td>
</tr>
<tr>
<td>Filter Tuning/Replacement</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>£2.2M</td>
<td>2025</td>
</tr>
<tr>
<td>22 kV Switchgear Uprates</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>£2.1M</td>
<td>2024</td>
</tr>
</tbody>
</table>
APPENDIX C: NORTHERN IRELAND PROJECTS IN EUROPEAN PLANS

How are Northern Ireland transmission projects included in ENTSO-E’s TYNDP?

Licensed TSOs, who are members of ENTSO-E, and third party promoters propose transmission projects to ENTSO-E for inclusion in ENTSO-E’s TYNDP. If these projects match the project of pan-European significance criteria below, they are included in the TYNDP.

Criteria for Inclusion in TYNDP

A project of pan-European significance is a set of Extra High Voltage assets, matching the following criteria:

- The main equipment is at least 220 kV if it is an AC overhead line or at least 150 kV otherwise and is, at least partially, located in one of the 34 countries represented within ENTSO-E;

- The project increases the grid transfer capability across a network boundary within the ENTSO-E interconnected network or at its borders;

- The grid transfer capability increase (expressed in MW) meets at least one of the following minimums:

 - At least 500 MW of additional Net Transfer Capacity; or

46 For the avoidance of doubt, the term “Northern Ireland Projects in European Plans” refers to Northern Ireland projects in ENTSO-E’s TYNDP and RegIP NS and Northern Ireland projects designated Projects of Common Interest.

47 For example, additional Net Transfer Capacity between two market areas.

48 That is, increasing the import and/or export capability of ENTSO-E countries in relation to others.
- Connecting or securing output of at least 1 GW/ 1000 km² of generation; or
- Securing load growth for at least 10 years for an area representing consumption greater than 3 TWh/ year.

SONI Projects in TYNDP 2018 and RegIP NS 2015

Table C-1 below lists the Northern Ireland projects we proposed, that are in ENTSO-E’s most recent final versions of TYNDP and RegIP NS. These were issued in 2018 and 2015 respectively.

Table C-1 Our projects in European TYNDP 2018

<table>
<thead>
<tr>
<th>TYNDP No.</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>North South 400 kV Interconnection Development</td>
</tr>
<tr>
<td>82</td>
<td>Renewable Integration Development Project (RIDP)</td>
</tr>
</tbody>
</table>
Northern Ireland Projects of Common Interest (PCIs)49

The EC oversees the designation of Projects of Common Interest (PCI). To be eligible for PCI status, inclusion in the last available TYNDP is an explicit condition. Table C-2 below lists the Northern Ireland Projects of Common Interest.

Table C-2 Northern Ireland Projects of Common Interest

<table>
<thead>
<tr>
<th>PCI No.</th>
<th>TYNDP No.</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13.1</td>
<td>81</td>
<td>North South 400 kV Interconnection Development</td>
</tr>
<tr>
<td>2.13.2</td>
<td>82</td>
<td>Renewable Integration Development Project (RIDP)</td>
</tr>
</tbody>
</table>

Northern Ireland e–Highway 2050 projects

The e–Highway2050 is a study project funded by the EC aimed at building a development plan for the European transmission network from 2020 to 2050. The development plan supports the EU’s overall policy objectives with regard to energy and decarbonising the European economy. Table C-3 below lists the Northern Ireland projects included in the e–Highway 2050 plan.

Table C-3 Northern Ireland projects in e–Highway 2050 plan

<table>
<thead>
<tr>
<th>TYNDP No.</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>North South 400 kV Interconnection Development</td>
</tr>
<tr>
<td>82</td>
<td>Renewable Integration Development Project (RIDP)</td>
</tr>
</tbody>
</table>

49 \url{https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0540&from=EN}
How are Northern Ireland and European Plans related?

It is worth highlighting how the TDPNI and the European plans and designations are related. Figure C–1 below illustrates the relationship. All our capital projects, irrespective of size, are described in the TDPNI.

Only high voltage projects that involve a large increase in transmission capacity are included in European plans. Of those only a small number of large cross border projects which increase the import and/or export capability of ENTSO–E countries are designated Projects of Common Interest.

Figure C–1 Relationship between Northern Ireland and European Plans
APPENDIX D: REFERENCES

Our Published Documents

I. SONI Transmission System Security and Planning Standards, September 2015

II. All Island Ten Year Transmission Forecast Statement 2018–2027

III. All Island Generation Capacity Statement 2019 – 2028

ENTSO-E Published Documents

IV. TYNDP 2018

V. RegIP North Sea, 2017

Local Legislation

VI. The Electricity Order (Northern Ireland) 1992 No. 231

VII. The Electricity Safety, Quality and Continuity Regulations (Northern Ireland) 2012

European Legislation

VIII. Birds and Natural Habitats Regulations, 2011

IX. Cross-border Exchanges in Electricity Regulation (EC) No 714/ 2009

X. Environmental Impact Assessment Directive

XI. Habitats Directive

XII. Internal Market in Electricity Directive 2009/ 72/ EC
XIII. Promotion of the Use of Energy from Renewable Resources Directive 2009/28/EC

XIV. Energy Efficiency Directive 2012/27/EC

Utility Regulator Published Documents

XV. TSO Licence granted to SONI

XVI. Transmission Licence granted to NIE Networks

XVII. NIE Networks RP6 Regulatory price Control, Utility Regulator, 2017

Government Published Documents

XVIII. Strategic Energy Framework, 2010

Other Published Documents

XIX. Grant Thornton: “Powering Northern Ireland A report exploring SONI’s role in the economy”, October 2016