Submission Document

Design of the System Defence Plan for Northern Ireland

In accordance with the requirements of Articles 11 and 4.5 of the Commission Regulation (EU) 2017/2196 Establishing a network code on electricity emergency and restoration

16th October 2020

Disclaimer

SONI Ltd as the Transmission System Operator (TSO) for Northern Ireland makes no warranties or representations of any kind with respect to the information contained in this document. We accept no liability for any loss or damage arising from the use of this document or any reliance on the information it contains. The use of information contained within this proposal paper for any form of decision making is done so at the user's sole risk.

Table of Contents

1.	Abbreviations	.5
2.	Purpose	.7
3.	Introduction	.8
3.	.1 Introduction to System States	11
3.	.2 Generic Power System Operation Overview	13
3.	.3 Operational Limits	14
	3.3.1 Loss of supply	
	3.3.2 System Frequency	14
	3.3.3 Voltage	17
	3.3.4 Power Flows	
	3.3.5 System Instability	17
3.	.4 Operation of a Power System by SONI	
	3.4.1 Frequency Management	
	3.4.2 Voltage Management	
	3.4.3 Power Flow Management	
4.	Design of the System Defence Plan	
	4.1 Objectives of the SDP	
	4.2 Activating the SDP	
	4.3 Application of the SDP	
	4.3.1 High Priority SGUs	
5.	System Defence Plan - Measures	
5.	.1 Automatic under-frequency control scheme	
	5.1.1 Automatic Low Frequency Demand Disconnection	
	5.1.2 Management of Energy Storage Devices	
5.	2 Automatic Over-frequency control scheme	
	5.2.1 Over Frequency Generation Shedding (OFGS) Scheme	
	5.2.2 Step Wise Linear Disconnection	
5.	.3 Automatic Scheme against Voltage Collapse	
	5.3.1 Automatic under-voltage load shedding (UVLS)	
5.	4 Frequency Deviation Management Procedure	
	5.4.1 Demand Side Response	
	5.4.2 Active Power Set Points	
5.	5 Voltage Deviation Management Procedure	
	5.5.1 Reactive power set points	
5.	6 Power Flow Management Procedure	
	5.6.1 Active Power Set Points	
	5.6.2 Special Protection Schemes	43

Emergency and Restoration – SDP for Northern Ireland

5.7 Assistance for Active Power Procedure	44
5.7.1 Assistance for active power from SGU	44
5.7.2 Moyle Interconnector	
5.8 Manual Demand Disconnection Procedure	
6. Next Steps	47

1. Abbreviations

- BASA Balancing and Ancillary Services Agreement
- BMPS Balancing Market Principles Statement
- CDGU Centrally Dispatched Generation Unit
- DCC Demand Connection Code
- DNO Distribution Network Operator
- EA Emergency Assistance
- EAS European Awareness System
- EMS Energy Monitoring System
- EWIC East-West Interconnector
- FCR Frequency Containment Reserve
- FRR Frequency Restoration Reserve
- FSM Frequency Sensitive Mode
- GC Grid Code
- HVDC High Voltage Direct Current
- LFCAOA Load Frequency Control Area Operational Agreement
- LFCBOA Load Frequency Control Block Operational Arrangement
- LFDD Low Frequency Demand Disconnection
- LFSM- Limited Frequency Sensitive Mode
- MEC Maximum Export Capacity
- MVAr Mega Volt-Ampere reactive
- NCER Network Code for Emergency Restoration
- NCC National Control Centre
- OFGS Over Frequency Generation Shedding
- OSS Operating Security Standards
- PLC Programmable Logic Controller
- POR Primary Operating Reserve
- PPM Power Park Module
- RfG Requirements for Generators
- RTC Real Time Commitment
- RTD Real Time Dispatch
- RR Replacement Reserve
- SAOA Synchronous Area Operational Agreement

Emergency and Restoration – SDP for Northern Ireland

- SCADA Supervisory Control and Data Acquisition
- SDP System Defence Plan
- SGU Significant Grid User
- SOGL System Operator Guideline
- SONI System Operator Northern Ireland
- SOR Secondary Operating Reserve
- SRP System Restoration Plan
- SVC Static Variable Compensator
- TOR Tertiary Operating Reserve
- TSO Transmission System Operation
- UF Under Frequency
- UR Utility Regulator
- UV Under Voltage
- UVLS Under Voltage Load Shedding
- WSAT Wind Stability Assessment Tool

2. Purpose

This System Defence Plan (SDP) is prepared in accordance with COMMISSION REGULATION (EU) 2017/2196 of 24 November 2017 "establishing a network code on electricity emergency and restoration"¹ (referred to as NCER), which came into force on the 18th of December 2017. Under NCER the Transmission System Operators (TSO) of a member state is required to develop and consult on a SDP prior to submission to the relevant regulatory authority for notification. This is a revised version of the SDP following a previous submission to the Utility Regulator (UR).

This SDP has been designed based on the requirements detailed within Articles 11 to 22 within NCER, the high-level requirements of these articles include:

- Design of the SDP
- Implementation of the SDP
- Activation of the SDP
- Measures of the SDP

In addition to the SDP providing an overview of the power system defence actions and schemes available to SONI as the TSO and the Distribution Network Operator (DNO); it also outlines the roles and responsibilities of Significant Grid Users (SGUs) including defence service providers during the implementation of the SDP.

This document also outlines how the system defence measures and procedures that are implemented within the SONI TSO controlled area of Northern Ireland relate to the relevant articles of NCER and the Grid Code², whilst providing the reader with an:

- Introduction to the system states of the power system
- Introduction to power system operation
- Overview of the system defence services
- Understanding of the roles and responsibilities of specific parties

This is not an operational document to be used by the TSO in the event an Emergency state being declared. The step by step actions used by SONI Castlereagh House Control Centre (CHCC) are included in real-time operational procedures. While the NCER requirements and licence requirements for system defence are jurisdictional the aim is to ensure the all-island system is maintained in a secure manner, hence there is a separate but complementary Ireland SDP which EirGrid has developed.

¹ <u>https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R2196&from=en</u>

² <u>http://www.soni.ltd.uk/how-the-grid-works/grid-codes/</u>

3. Introduction

There are various statutory obligations to which a TSO must adhere from European directives, through to the applicable codes.

NCER is one of a suite of European Network Codes and Guidelines that seek to achieve a fully functioning and interconnected energy market to ensure the security of supply and to benefit all consumers via competitive markets across the EU.

The NCER aims to establish a set of common minimum requirements and principles for the measures and procedures of TSOs, DNOs and SGUs when a power system is in Emergency, Blackout or Restoration state, however, this SDP concentrates on operating the power system when in Emergency state. There is a separate companion document, the System Restoration Plan (SRP) detailing the TSO response to a Blackout state. The NCER links and interacts with a number of other Network Codes, including but not limited to:

- System Operation Guideline (SOGL), EU Regulation 2017/1485³
- Requirements for Generators (RfG), EU Regulation 2016/631⁴
- High Voltage Direct Current (HVDC), EU regulation 2016/1447⁵
- Demand Connection Code (DCC), EU Regulation 2016/1388⁶

EU Regulations supersede national legislation and have primacy over national and other regulations. Specifically, the design of this SDP is compiled in accordance with NCER Article 11 and is consulted upon in accordance with Article 7. The SDP includes a list of measures to help prevent the emergency event moving towards a full or partial blackout. By identifying the relevant SGUs responsible for the implementation of measures related to the SDP, known as defence service providers, a mapping table of the SGU category groups, e.g. types of generators, demand, Interconnectors or aggregators, listed against the relevant measure is provided for transparency.

The SDP provides useful background information into how the TSO and DNO operate the system during an Emergency state in order to return to Normal state as soon as practicable. In order to place the SDP in an operational context, there is a description in section 3 on how the TSO and DNO operate the system in the Normal and Alert states. This design of a SDP also provides an overview of how the system defence measures as specified in NCER will be satisfied, including by reference to existing codes.

The first version of the SDP proposal was consulted on from the 14th November 2018 to 12th December 2018 and received two responses; with no objections and one being out of scope. On 18th December 2018, SONI submitted the following proposals relating to the SDP to the UR:

- a) Terms and conditions to act as a defence service provider
- b) List of Significant grid users for Northern Ireland (the TSO stated there are no High priority grid users so did not provide a list)
- c) Design of the System Defence Plan

Emergency and Restoration – SDP for Northern Ireland

³ <u>https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R1388&from=EN</u>

⁴ https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0631&from=EN

⁵ https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R1447&from=EN

⁶ https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R1388&from=EN

Documents a) and b) are required to be approved by the UR while the design of the SDP is only required to be notified to the UR. However, the SDP strongly interacts with the NCER documents that do require approval and should be considered together as a package. On the 1st October 2019, the UR published a decision to not approve documents a) and b) above and seek amendments to all the documents submitted by SONI. While the Design of the SDP is not subject to formal approval, the UR requested amendments to all the proposals submitted. In addition to meeting the SDP requirements as stipulated in NCER, this document has close regard for UR feedback in this revised SDP. Additionally, the document has been updated in collaboration with the DNO.

The following public documents, which have arisen from the requirements of SOGL also relate to NCER. All, except the Operating Security Standards, had not been written at the time of the original submission to the UR and are now of relevance to this resubmission proposal.

- Synchronous Area Operational Agreement (SAOA)⁷
- Load Frequency Control Block Operational Arrangement (LFCBOA)⁸
- Load Frequency Control Area Operational Agreement (LFCAOA)⁹
- Business Procedure mapping SOGL System states¹⁰
- Operating Security Standards (OSS)¹¹

SONI held a second consultation on our revised proposed Design of the System Defence Plan for Northern Ireland. This consultation opened on 8 July 2020 for an extended period of 6 weeks until 21 August 2020. It was available to download on the EirGrid Group and SONI websites and was discussed at the All Island Forum on 12 August 2020.

SONI (TSO) received no submissions on the consultations.

⁷ <u>http://www.soni.ltd.uk/media/documents/S1-SAOA-for-the-Ireland-and-Northern-Ireland-Synchronous-area-16.12.2019-(post-Title-2-approval).pdf</u>

⁸ <u>http://www.soni.ltd.uk/media/documents/S2-LFC-Block-Operational-Agreement-for-Ireland-and-Northern-Ireland-16.12.2019-(post-Title-2-approval).pdf</u>

⁹ <u>http://www.eirgridgroup.com/site-files/library/EirGrid/S3-LFC-Area-Operational-Agreement-for-Ireland-and-Northern-Ireland-16.12.2019.pdf</u>

¹⁰ <u>https://www.sem-o.com/documents/general-publications/BP_SO_09.2-Declaration-of-System-Alerts.pdf</u>

¹¹ http://www.soni.ltd.uk/media/documents/Operations/SONI%20Operating%20Security%20Standards%20v1.pdf

3.1 Introduction to System States

The TSO is required to monitor and communicate the state of the Northern Ireland transmission system. The SOGL defines the following five system states (demonstrated in Figure 1, contained within the red dashed line) and provides a set of criteria for each system state. These system states have been aligned with the existing system alerts in an all-island business process which describes how the system alerts states are defined and declared, BP_SO_9.2¹² refers:

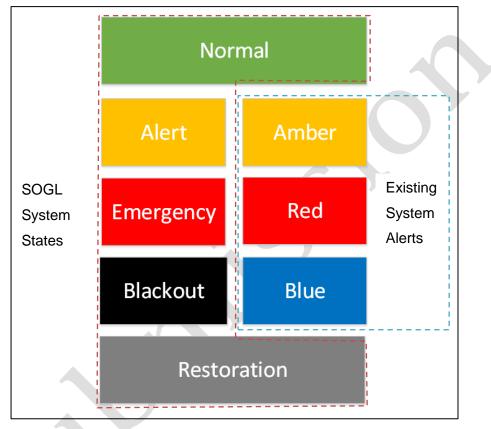


Figure 1 – SOGL aligned System States and Alerts

The system states range from the Normal state to increasing levels of system stress; Alert state (Amber alert); Emergency state (Red Alert); Blackout state (Blue Alert). There is also a Restoration state during which actions are being taken to bring the power system back to the Normal state.

In accordance with the NCER, the SDP describes the management of the system during the Emergency state or if it is about to enter the Emergency state; therefore to fully explore the system operation during an Emergency state, consideration is given in this SDP to explaining system operation during both Normal and Alert states.

Emergency and Restoration – SDP for Northern Ireland

¹² <u>https://www.sem-o.com/publications/tso-responsibilities/</u>

For operation during a Blackout state please refer to the separate companion document the SRP, which is also produced by SONI in accordance with NCER.

The classification of transmission system states is prescribed in SOGL article 18 and specifically for SONI's transmission system is laid out in BP_SO_9.2¹³, which considers the transmission system to be in Emergency state (Red Alert) if any of the following has occurred:

- a) there is at least one violation of voltage limits, short-circuit current limits, or current limits in terms of thermal rating;
- b) frequency does not meet the criteria for the Normal state or Alert state;
- c) any of the following system defence plan measures are activated;
 - 1. Activation of Under Frequency (UF) load shedding,
 - 2. Widespread (multiple station) Under Voltage (UV) load shedding,
 - 3. Activation of system separation protection.
 - 4. Activation of Emergency Assistance / Emergency Instruction
- d) there is a failure in the functioning of
 - 1. EMS/ SCADA
 - 2. Phones (Corporate and Optel)

resulting in the unavailability of those tools, means and facilities for longer than 30 minutes.

The "Red Alert" signal should also be initiated by the TSO when it is likely/ imminent that the following condition is fulfilled:

a) In the period immediately ahead (i.e. in the next 4 hours) there is a high risk of failing to meet System Demand (or maintaining normal Voltage and Frequency levels in all substations) and the following condition will arise:

$MAR_{NI} < RR_{NI}$

Where:

 $RR_{NI} = Regulating Reserve currently set at 50MW (dynamic) -subject to system conditions$ $MAR_{NI} = [GEN_{NI} + WIND_{NI} +/- ICF_{NI} + EAIC_{NI} +/- TL + EATL_{NI}] - LOAD_{NI}$ $GEN_{NI} = Available generation in NI$ $WIND_{NI} = Expected generation from wind in NI$ $LOAD_{NI} = Expected system load in NI$ $ICF_{NI} = Flow on the Moyle Interconnector$ $EAIC_{NI} = Emergency Assistance available on the Moyle Interconnector$ TL= Flow on Tie Line $EATL_{NI} = Emergency Assistance available on the Tie Line$

¹³ <u>https://www.sem-o.com/publications/tso-responsibilities/</u>

Emergency and Restoration – SDP for Northern Ireland

When an Emergency state occurs a Red Alert is issued from the TSO notifying all generating stations, key NIE Networks personnel, relevant TSO Staff and key external stakeholders. The TSO will also update the European Awareness System (EAS), which notifies other European TSOs that SONI is in Emergency state. Once a measure or measures in the SDP have been activated the EAS is updated to Restoration state. Once the system has over an hour of stable operation with a low risk of further alerts, then the Red Alert is cancelled and the TSO updates the EAS to Normal state.

3.2 Generic Power System Operation Overview

Managing a synchronised power system is a complex job and requires co-ordination and co-operation between TSOs, DNOs, generators and demand service providers. While the definition of the three system states Normal, Alert and Emergency are relatively clear, the actions of the TSO are not so distinct. It should be noted that the transition from Normal/Alert state to Emergency state does not convey additional powers on the TSO; the main aim of the TSO remains the same, i.e. to operate, or if necessary restore the system within the operational limits (Normal state).

To maintain the system within operational limits requires constant vigilance; using forecasts and reviewing real-time data to inform the next TSO action to be taken. Due to the small size of the synchronous power island there are relatively many more balancing actions to be instructed in comparison to the central EU synchronous system. A prudent TSO does not hold back in taking an action, such as waiting until the system is in Emergency state would be too late and at odds with the TSO's legal mandate. There are, however, some automatic system defence measures described in this SDP to prevent fast acting phenomena.

Therefore, this SDP includes an explanation how the TSO manages within normal operational limits, as some of these measures which are used in Normal and Alert state are still active and continuing if the system fails to recover and transitions to Emergency state.

This SDP will provide a comprehensive overview of how the TSO manages the system against the main events that impact the operation of a synchronous electrical system together with the actions available to the TSO. Where the action is only applied during the defined Emergency state, and hence is a system defence measure, this will be highlighted.

3.3 **Operational Limits**

There are many variables in a complex synchronous electrical system and the TSO operates within certain limits to ensure standards are maintained. These limits are defined in SOGL and will be enacted in the Operational Security Standards (OSS), which is currently under review to ensure they align with the requirements of the SOGL.

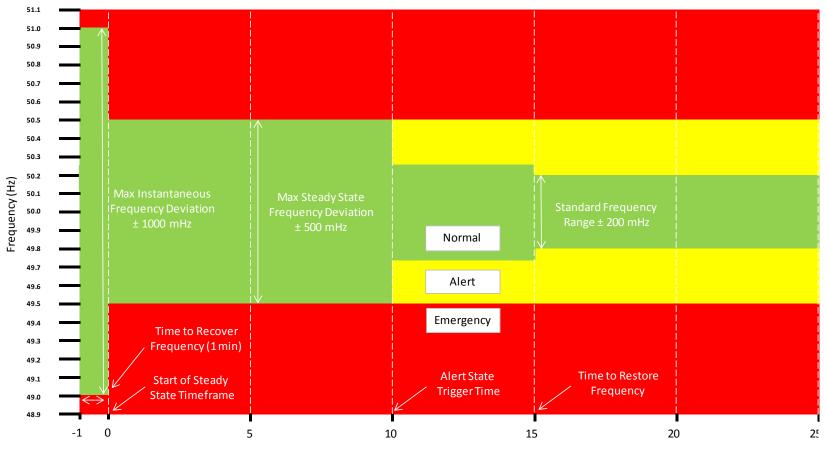
The transmission system is operated so that under normal operation and in the event of certain anticipated contingencies (loss of any single item of generation or transmission plant (N-G, or N-1) there will be no:

- Loss of supply, subject to certain exceptions, see below
- Frequency event outside the operational limits
- Voltage conditions outside the operational limits
- Transmission plant operating outside its short term rating
- System instability

A brief discussion of each of these issues is provided below.

3.3.1 Loss of supply

The transmission system is designed with certain amount of redundancy of plant, e.g. double overhead line circuits and more than a single transformer at a substation. This is to ensure maintenance of an individual item is possible without a subsequent loss of supply. In addition, credible contingencies (fault or forced outages) may be covered during planned scheduled maintenance. Therefore, no loss of supply is allowed for a single contingency / maintenance outage, however, a fault during a maintenance outage can lead to a loss of a defined group up to 300MW for a limited time, see OSS for details.


3.3.2 System Frequency

Frequency is a measure of the transmission system being in balance, i.e. when the amount of generation dispatched equals the amount of demand on the system then frequency is exactly 50Hz across the whole synchronous area. Minute by minute variations on the system means that frequency varies from the nominal 50Hz, e.g. an excess of generation and the frequency rises above 50Hz. Therefore, an operating range around 50Hz defines the frequency quality parameters which apply SONI synchronous area.

standard frequency range	± 200 mHz
maximum instantaneous frequency deviation	1000 mHz
maximum steady-state frequency deviation	500 mHz
time to recover frequency	1 minute
frequency recovery range	± 500 mHz
time to restore frequency	15 minutes
frequency restoration range	± 200 mHz
alert state trigger time	10 minutes
Table 1 COCL Frequency Deremotors	

Table 1 – SOGL Frequency Parameters

Table 1 shows the SOGL defined quality parameters copied from SAOA. The following graphic, Figure 3, summarises when an alert would be triggered based on a deviation from 50Hz for steady state situations (> 1 minute). For clarity, the graphic does show a short duration transient state for one minute where the frequency could fall to 49.0Hz and recover to 49.5Hz and the system remains in Normal state.

Duration of Steady State Frequency Deviation (Minutes)

Figure 1 – System States during a Frequency Transient

3.3.3 Voltage

Voltage can be used as an indicator of the health of a transmission system. There are various levels of nominal voltage used in the SONI transmission system, 275kV and 110kV. For efficiency, the higher voltages are used for transmission purposes and the voltage is incrementally stepped down for the DNO to distribute to consumers at lower voltages. Transmission plant is designed to operate at a range centred on the nominal voltage and SOGL provides the following limits (Table 2) for an intact system (Base Case) and for the credible contingencies mentioned above. Voltage issues are more likely to manifest in a localised areas of the transmission system due to individual faults, however, widespread voltage collapse is possible if reactive power (MVAr) reserves are severely depleted.

Nominal Voltage	Base Case and Contingency Limits							
(kV)	(kV)							
275	248 - 307							
110	99 - 123							
Table 2 - SOGL Voltage Limits								

3.3.4 Power Flows

The fundamental objective of a transmission system is to transport electricity from the generation source to the demand centres. All plant and equipment that carries electricity have a thermal limit beyond which it will fail to operate safely; therefore it is the responsibility of the TSO to ensure the transmission system is operated within the thermal limits. However, during system disturbances, such as immediately post-fault, a temporary overload rating may apply where the rating may exceed 100% of the normal (pre-fault) rating. Depending on the type of plant this temporary rating may apply for a maximum of a few minutes to a couple of hours and allows the TSO time to recover the system to within normal ratings.

3.3.5 System Instability

Instability of a power system could cover numerous scenarios including voltage and frequency issues mentioned above. However, with the changing nature of generation towards more renewable sources the system inertia (a measure of how robust the system is to disturbances) is reducing and has to be monitored closely. There has been detailed offline analysis carried out to provide certain constraints to manage inertia, e.g. there is a percentage limit on the System Non-Synchronous (generation) Penetration

(SNSP) figure and there are a certain number of synchronous machine units constrained to run to ensure the system inertia remains above a minimum level. These constraints and others are published monthly in the Operational Constraints Update¹⁴ and are used in the online transient stability assessment tool.

3.4 Operation of a Power System by SONI

As discussed in the Balancing Market Principles Statement (BMPS), the main objectives of SONI, as TSO, in operating the power system are to:

- 1. Ensure operational security
- 2. Maximise renewable sources
- 3. Provide efficient operation of the market

The requirement to provide transparency is an overarching obligation and SONI supports the transparency objective through the design of our processes and tools including a range of publications, such as the BMPS which describes the Scheduling and Dispatch process summarised below in greater detail.

Starting in the longer term (in outage planning timescales), offline analysis is carried out to calculate the operating reserve requirements and system constraints which are published monthly in the Operational Constraints Update. Still in outage planning timescales but nearer real-time there is a Weekly Operational Constraints Update published based on offline studies with the forecast system outages. This is to provide information on any forecasted significant network congestion or other issues that could potentially restrict dispatchable generation in a particular area or to flag if dispatchable generation is required in a particular area.

All these constraints are fed into SONI's scheduling tool which is looking up to 30 hours ahead of real-time using the currently connected generation technical data and wind forecasts. This produces a secured schedule for each half-hour for the following day that meets the demand forecast and satisfies the constraints (including reserve) delivered in the most efficient and economical way.

This secured schedule is refined approximately every 4 hours on the actual day. Then at 4 hours ahead there is the RTC schedule (Real Time Commitment on units to be dispatched) refined every 15 minutes followed at one hour ahead by the RTD schedule

¹⁴ <u>http://www.soni.ltd.uk/media/documents/Operational-Constraints-Update-Feb-2019.pdf</u>

(Real Time Dispatch showing indicative units to increase or decrease) refined every 5 minutes.

While the above schedules are created using the indicative demand and generation patterns, the TSO uses the EMS (Energy Management System) to provide real-time indication and control of the power system, which includes a SCADA (Supervisory Control and Data Acquisition) system for gathering real-time data from the power system. This runs a full contingency analysis every minute to flag up any predicted violations of voltage or thermal limits.

Also in real-time, the WSAT (Wind Stability Assessment Tool) runs every 5 minutes testing the transient stability of the system on all defined contingencies. The output is a prediction of the frequency nadir and the likely rate of change of frequency for each credible event. Real-time information is provided to the operators as alarms when any limit is approached so that manual actions may be taken as necessary.

3.4.1 Frequency Management

The system frequency is monitored on a second by second basis by the TSO. Through a combination of frequency regulation from various responsive plant and dispatch of generating units to change their output level, frequency is maintained within the Standard Frequency range (see Table 1) under normal system conditions.

Frequency regulation is managed through the provision of different types of reserve products described in SOGL. The SAOA maps the existing Grid Code reserve products (Primary, Secondary and Tertiary Operating Reserve – POR, SOR, TOR) to the SOGL categories, see below. For all reserve providers, the reserve capability is mandated by the Grid Code and is contracted via System Services agreements. These measures to control frequency are available for the TSO to select the most economic service providers.

While there are other commercial services available to the TSO, such as Fast Frequency Response, this discussion is concentrating on the SOGL defined reserve services. Therefore, the initial response to managing the frequency is provided by Frequency Containment Reserves (FCR) (previously POR & SOR) which acts within 90 seconds.

Frequency Restoration Reserves (FRR) (previously TOR) is fully available after 90 seconds and is sustainable for up to 20 minutes.

Sufficient FCR and FRR are held to ensure that for the loss of the largest single power infeed to / or outfeed from the system at any time, the system frequency (See also Figure 1 – System States during a Frequency Transient):

- deviation does not exceed the Maximum Instantaneous Frequency Deviation of 1000 mHz and returns to within the Maximum Steady State Frequency Deviation within 1 minute
- deviation does not exceed the Maximum Steady State Frequency Deviation (+/-500 mHz) after 1 minute and returns to the Standard Frequency Range within 15 minutes
- deviation remains within the Standard Frequency range (50 +/- 200 mHz) after 15 minutes with a quality target outside this range limited to a maximum 15,000 minutes annually for all conditions

To ensure there are sufficient frequency response services ahead of real-time, these requirements are included in the scheduling tools calculating each half-hour scheduling period from 30 hours ahead based on the largest infeed loss for that interval. Together with other variables such as demand characteristics, technical and commercial data a co-optimisation of system services is scheduled to ensure reserve requirements are always met economically and efficiently.

Following any frequency incident where reserves have been depleted, such as an unexpected loss of a large generator, Replacement Reserve (RR) will be dispatched to recover the operating reserve within 20 minutes and is sustainable for up to 4 hours to cover for the next contingency.

The Moyle Interconnector link to Great Britain can provide a low and high frequency response service to both power systems. For low frequency events in Northern Ireland Moyle can provide response using its Frequency Limit Control (FLC) functionality. Once system frequency reaches 49.80Hz, Moyle will start providing response with a gain of 500MW/Hz up to the maximum agreed MW value at a frequency of 49.65Hz. The maximum MW value is currently 75MW. The response will be maintained below the lower frequency value and once the frequency rises above 49.65Hz the response will begin decreasing (at 500MW/Hz) until reaching 49.80Hz when the response will have reduced to zero. Depending on the frequency deviation and the duration of the response, it is classed as FCR or FRR.

For a high frequency in Northern Ireland, once system frequency reaches 50.20Hz, Moyle will start providing response with a gain of 500MW/Hz up to the maximum agreed MW value at a frequency of 50.35Hz. The maximum MW value is currently 75MW. The response will be maintained above the higher frequency value and once the frequency falls below 50.35Hz the response will begin decreasing (at 500MW/Hz) until reaching 50.20Hz when the response will have reduced to zero. Depending on the frequency deviation and the duration of the response, it is classed as FCR or FRR.

In accordance with SOGL and applied in the Grid Code all Interconnectors must remain connected to the transmission system and operational between 47.0 Hz up to 52.0Hz (below 47.5Hz they only need to stay operational for 30 seconds). Should the frequency fall unexpectedly outside the Maximum Steady State Frequency Deviation limits then automatic under/over frequency control schemes and/or Low Frequency Demand Disconnection schemes operate, see sections 5.1 and 5.2.

3.4.2 Voltage Management

The correct control of the system voltage is fundamental to the safe and secure operation of the power system. The TSO is obliged to operate the transmission system with the operational security limits defined in SOGL, see Table 2.

However, SONI has a more stringent set of voltage limits in operational timescales, the Steady State Voltage limits:

Nominal Voltage	Steady State Voltage Limits						
	(kV)						
275kV	248 - 303						
110kV	99 - 121						
Table 3 - SONI Voltage Limits							

Table 3 - SONI Voltage Limits

Additionally there are increasing voltage step change limits for increasingly severe operations including faults, starting with operational switching (+/-3%), following the loss of a single circuit (+/- 6%) and following loss of a double circuit overhead line (+6% / - 10%). Managing the system to a tighter range around the nominal voltage helps to ensure the long-term system security and integrity of plant.

Assessments are carried out in Long Term Planning timescales to identify certain "must run" generation units due to voltage constraints in localised areas. This analysis is carried out on an offline study. In real time there is an online contingency analysis testing each contingency in turn which is updated using latest wind forecasts and real time data, in order to take pre-emptive action to avoid a post fault breach of the voltage limits. This real time analysis takes place continuously.

The voltage management of the system is achieved in a number of ways and the options available to engineers in operational timescales are:

- switching reactive compensation equipment
 - o Capacitors
 - Reactors

Electricity Emergency and Restoration – SDP for Northern Ireland

- Instructing MVAr on synchronous generation
- Changing target voltage set points
 - Static Variable Compensators (SVCs)
 - Power Park Modules (PPM)
- Switching out high reactive gain circuits
- Simultaneous tap changing of CHCC controlled grid transformers
- Tap staggering of parallel CHCC controlled system transformers, where it has been agreed with the asset owner

These measures are all designed to ensure the system remains within the Normal System voltage range with sufficient voltage support (MVAr) reserves to limit the voltage step change post contingency within the post-contingency limits and hence avoid an Emergency state. Specifically for voltage issues, an Emergency state is when at least one violation of voltage limits is active and or widespread (multiple) under voltage load shedding activated.

3.4.3 Power Flow Management

Power flows across the synchronous area of Ireland are managed by the TSOs. In accordance with the Balancing Market Principles Statement, system constraints are one of the inputs into the optimisation tools so that transmission plant outages are taken into account. The objective is to ensure that the system is operated within the thermal limits of the transmission equipment.

Standard remedial actions to maintain the system in Normal State include:

- Re-switching circuits to restrict flows
- Return of outage plant to remove system overload
- Re-dispatch active power set points for generators online
- Schedule additional generation
- Tap change of transformers
- Adjust active power flows through HVDC systems with other TSOs

Under fault conditions temporary (emergency) load conditions may be applied to equipment as system conditions dictate. If a severe overload is anticipated for a post-fault condition automatic protection schemes may be used to preserve the integrity of the transmission plant and apparatus.

These measures are all designed to ensure the system remains within the standard pre and post contingency operating capability and hence avoid entering an Emergency state. Specifically as regards thermal issues, an Emergency state is when at least one violation of current limits on transmission plant is active, or activation of system separation protection.

4. Design of the System Defence Plan

4.1 Objectives of the SDP

The SDP is designed to conform to the NCER Articles 11 to 22 and it is intended to serve as an oversight document referencing the more detailed plans. Should the detailed plans change to take into account the characteristics of the transmission system or underlying DNO systems, due to the behaviour and capabilities of load and generation within the synchronous area, then changes would be made in accordance with the NCER.

As referenced in NCER Article 11(5), the SDP contains the following technical and organisational measures:

System protection schemes (automatically initiated) including:

- automatic under-frequency control scheme
- automatic over-frequency control scheme
- automatic scheme against voltage collapse

System defence plan procedures (manually instructed) including:

- frequency deviation management procedure
- voltage deviation management procedure
- power flow management procedure
- assistance for active power procedure
- manual demand disconnection procedure

Some of the above measures may be provided by neighbouring TSOs and while TSO assistance is not in the group of measures listed in the NCER Article 11(5), Inter-TSO assistance and co-ordination in an Emergency state is prescribed in NCER Article 14 to ensure consistency of co-operation across the EU TSOs.

In developing the SDP measures, which may be provided by designated SGUs, SONI has co-ordinated and consulted with the DNO on the production of this document to ensure the following NCER principles are met:

- the impact of the measures on the system users shall be minimal
- the measures shall be economically efficient
- only those measures that are necessary shall be activated
- the measures shall not lead the TSO's transmission system or the interconnected transmission systems into Emergency state or Blackout state.

NCER Article 11(3) lists the following provisions that the SDP must contain:

- a) The conditions under which the SDP is activated;
- b) The SDP instructions to be issued by the TSO; and
- c) The measure subject to real-time consultation or coordination with the identified parties.

For a) please see next section for a detailed explanation, whereas b) and c) may be described more generally. The system defence measures discussed in this section and described in greater detail in section 5 are all existing measures currently available to the TSO, and there are well established communication channels and relevant procedures. This is the case for all SGUs and the DNO.

All automatic control schemes are activated when the relevant threshold is reached and instructions or real-time consultation is not possible, whereas for the manual procedures a significant majority of the procedures is the TSO directing the defence service providers, usually via dispatch instructions, or the DNO via control room telephony. Where a manual procedure is initiated by instruction from the TSO this is highlighted in the section description of the measure.

4.2 Activating the SDP

The SDP contains (manual) procedures and automatic schemes available to the TSO to prevent the further deterioration towards an Emergency state when one is forecast or to manage the system when it is in an Emergency state.

The NCER states, as per below, that system defence measures can be activated once the system is in Emergency state or, alongside remedial actions based on operational security analysis, to prevent the system from entering the Emergency state.

NCER Article 13 (2) states, in addition to the automatically activated schemes of the system defence plan, pursuant to point (a) of Article 11(5), each TSO shall activate a procedure of the system defence plan when:

(a) the system is in emergency state in accordance with the criteria set out in Article 18(3) of Regulation (EU) 2017/1485 and there are no remedial actions available to restore the system to the normal state; or

(b) based on the operational security analysis, the operational security of the transmission system requires the activation of a measure of the system defence plan pursuant to Article 11(5) in addition to the available remedial actions.

Each TSO uses 'remedial actions' to prevent their system from deteriorating and transitioning away from the Normal system state. These actions are categorised in

SOGL (Article 22 refers) in general terms and some have been described in section 3.4 above. NCER re-classifies these actions as system defence measures when these actions are included in the system defence plan.

As noted in the previous section NCER divides system defence measures into automatic schemes and manual procedures, therefore automatic schemes in the SDP may be described as:

• those initiated when the trigger threshold for each particular scheme is reached, e.g. low frequency relay, and when system is in Emergency state.

Manual procedures in the SDP may be described as:

- those that are instructed when the system is in Emergency state when there are no remedial actions available (NCER 13 (2) (a)), or
- those that are instructed based on a forecast that the system will enter an Emergency state even with available remedial actions being activated (NCER 13 (2) (b))

Consideration is given below to the differences between remedial actions and manual procedures in the SDP.

The TSO has various actions available to correct various phenomena (frequency or voltage or power flows outside relevant operational limits) whereby some remedial actions and system defence procedures may require similar actions. It is important to note that the differentiation can be attributed to the status of the system when the measure is applied.

Remedial actions are applied first within Normal/Alert state and if these remedial actions are no longer effective in either;

- a timed capacity (not fast acting enough to stop the system entering Emergency state), or
- a resource capacity (not adequate to stop the system entering Emergency state), then

the SDP is activated and the resulting actions are system defence procedures.

In summary a system defence measure may be described as either:

- An automatic or manual corrective action initiated / instructed during an Emergency state, or
- A manual corrective action, designed to be used during an Emergency state, instructed when an Emergency state is forecast.

A mapping table has been provided in Table 4 below to show which actions are part of the SDP and which are categorised as remedial actions. Note that some actions may be initiated manually during the Normal and Alert state and may be thought as a remedial action; however, they are a system defence procedure if the system is expected to transition into the Emergency state. This is typical of the transient nature of events impacting on the transmission system.

Table 4 contains the automatic scheme or manual procedure discussed above in chronological order of NCER Articles and colour coded on the left hand side of the table. By identifying all the actions available to the TSO in each category it is categorised against a remedial action or system defence measure as defined above. Again it is colour-coded for ease, with red filled boxes , , denoting a system defence measure; a blue filled boxes , denoting a remedial action and green filled boxes, denoting an action that could be a remedial action or a system defence measure depending when the action was initiated. All the actions identified as system defence measure are discussed in detail in chapter 5.

Article	NCER Chapter II Section 2 Technical & Organisational Measures	Control Scheme / Management Procedure	Remedial Action	System Defence Measure	Reasoning
15	Automatic Under Frequency Control Schemes	LFLSS		×	Low Frequency Relays triggered from 48.8.5Hz.
-	Ratomatic onder rrequency control schemes	Energy Storage Providers		(X)	Currently none available, however, proposed frequency threshold is 49.0Hz
16	Automatic Over-Frequency Control Schemes	Over Frequency Gen Tripping Scheme		x	High Frequency Relay triggered from 50.50Hz
-	Automatic over-requency control schemes	Step wise linear disconnection		x	Triggered from Frequency Threshold of 50.5Hz.
1	Automatic Scheme Against Voltage Collapse	UVLS (Low voltage Demand disconnection)		x	Scheme triggered when local voltage is below voltage standards
-	Automatic scheme Agamst voltage conapse	Automatic Blocking Auto-tap transformers scheme			Confirmed that automatic scheme is not required.
		Standard Frequency Management Actions	x	5	Remedial Actions as taken in Normal / Alert state
		Operating Reserve - FCR	x		Remedial Action as FCR is as initiated within 15 seconds of frequency deviation
		Operating Reserve - FRR	x	x	FRR may be Remedial Action or System Defence Measure depending on system state when initiated (15s - 90s). Clauses for GC -
		Operating Reserve - RR	x	x	RR may be Remedial Action or System Defence Measure depending on system state when initiated (20mins)
		Limited Frequency Sensitive Mode - Under	x		LFSM-U is designed to be initiated at 49.5Hz, however, policy for it to start at 49.8Hz to be consistent with Non-RfG PPMs. Therefore a Remedial Action.
18	Frequency Deviation Management Procedure	Limited Frequency Sensitive Mode - Over	x		LFSM -O is Remedial Action as initiated at 50.20Hz
		East West Interconnector	x		Frequency Control - Sensitive Mode is a Remedial Action as initiated at 49.80Hz (Low) or 50.20Hz (High).
		No pump storage			None
		Active power set points within technical parameters when Frequency is outside Alert Limits.		x	Generators and DSUs dispatched centrally even if Frequency is outside Alert Limits. Therefore a System Defence Measure.
		Authority to disconnect SGUs		x	Low Freq.: System Defence Measure as possible if below 49.50Hz and above 48.85Hz (LFDD threshold), see manual demand disconnection. High Freq.: Rare to be a System Defence Measure as above
		Energy Storage Providers		(X)	ESS: Before LFDD triggered: change load to Gen mode or trip load? Currently none available.
		Standard Voltage Management Actions	x		Remedial Actions as taken in Normal / Alert state
19	Voltage Deviation Management Procedure	Authority to establish reactive power set-points & running additional generation for MVars		x	Generators and DSUs dispatched centrally even if outside operational security Limits. Therefore a System Defence Measure.
		Other TSO making MVars available		x	System Defence Measure as requesting Emergency Assistance for reactive power from TSOs not in Emergency state.
		Standard Power Flow Management Actions	x		Remedial Actions as taken in Normal / Alert state
20	Power Flow Management Procedure	Active power set points within technical parameters (Special Actions)		x	Generators and DSUs dispatched centrally even if outside operational security Limits. Therefore a System Defence Measure.
		Authority to disconnect SGUs inc. Special Protection Schemes (Thermal)		x	Disconnection of circuits to prevent excessive thermal overload outside operational limits. Therefore System Defence Measure.
		Balancing service provider		x	Generators and DSUs dispatched centrally even if system adequacy is lacking. Therefore a System Defence Measure including the ability to re-arrange outages to preserve system adequacy.
21	Assistance for Active Power Procedure	Non-Balancing service provider (non- available)		(X)	Currently none available.
		East West Interconnector		x	System Defence Measure as requesting Emergency Assistance for active power from TSOs not in Emergency state.
52	Manual Demand Disconnection Procedure	Emergency Manual Disconnection		x	Manual Action to avoid prolonging Emergency state (frequency deterioration, thermal overloads, and under voltage). Therefore a System Defence Measure.
2		Rota Load shedding		x	Manual Action to avoid prolonging Emergency state (frequency deterioration, thermal overloads, and under voltage). Therefore a System Defence Measure.

Table 4 - Mapping Table - Remedial Actions Vs System Defence Measures

4.3 Application of the SDP

As outlined in NCER Article 2, SGUs for this regulation include the following:

- Generators from 5MW upwards (Type C, D)
- Generators from 100kW to < 5MW (Type B) where these units are identified as SGUs
- transmission-connected demand facilities
- transmission connected closed distribution systems
- aggregators of re-dispatching of power generating modules or demand facilities and providers of active power reserve
- HVDC Interconnector Owners

For clarity, the tabular format and graph of the RfG generator types are presented in Table 5 – Limits for thresholds for type B, C and D power-generating modulesbelow.

Synchronous areas	Limit for maximum capacity threshold from which a power- generating module is of type B	Limit for maximum capacity threshold from which a power- generating module is of type C	Limit for maximum capacity threshold from which a power- generating module is of type D
Continental Europe	1 MW	50 MW	75 MW
Great Britain	1 MW	50 MW	75 MW
Nordic	1,5 MW	10 MW	30 MW
Ireland and Northern Ireland	0,1 MW	5 MW	10 MW
Baltic	0,5 MW	10 MW	15 MW

Table 5 – Limits for thresholds for type B, C and D power-generating modules

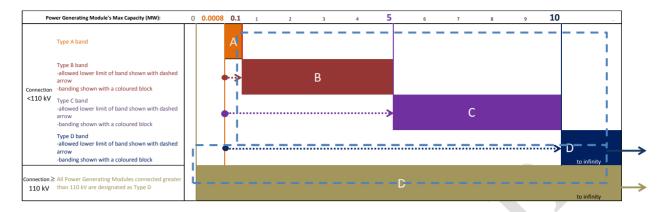


Figure 2 - Limits for thresholds for type B, C and D power-generating modules

By mapping the individual system defence services, see later in Chapter 5, against the SGUs, Table 6 below is produced to demonstrate the system service providers. Note some services are meeting more than one system defence measure, e.g. instructing Active Power set points.

All these services are existing actions available to the TSO and may be cross-referenced against the existing obligations in the Grid Code. When comparing the Grid Code defined 'Demand Side Units' and 'Centrally Dispatched Generating Units' these may be viewed as 'transmission-connected demand facilities / aggregators of demand facilities' and generally Type C & D Generators, respectively.

As can be seen from the table, the following SGU, 'Transmission connected closed distribution systems' and 'Transmission Connected Demand Facilities' have not been mapped to a service as we do not currently have this category of SGU on the SONI system. Additionally, as all generation below a Registered Capacity of 5MW does not have to meet the Grid Code then we have not identified any defence services that Type B generators are mandated to provide and hence are not mapped. This does not preclude Type B generators from offering to provide defence services in the future, however, this may involve the generator volunteering to be dispatchable by the TSO.

To show the link from Table 4, Table 6 is in chronological order of NCER Articles, however, this time it shows only the system defence measure mapped against providers, i.e. the white cells from Table 4 have not been carried forward. As noted at the beginning of this section the DNO and their distribution connected demand customers are not SGUs in accordance with NCER. Whereas distribution connected generators Type D & C (all cases) and B (where they are so defined) are SGUs.

There are system defence measures discussed in chapter 5 which directly impact distribution connected demand customers, such as Manual Demand Disconnection, however, they are not classified as a defence service provider as they are not SGUs.

Where the service provider is solely the distributed demand customer this has been highlighted in a red filled box and mapped against a Non-SGU. The mapping for the remaining defence measures against SGUs has been highlighted in yellow filled boxes.

						SG	Us				Non- SGUs
NCER Article	NCER Chapter II Section 2 Technical & Organisational Measures	Individual System Defence Measure / Service	Type D Generator (T-Connected)	Type D Generator (D-Connected)	Type C Generator	Type B Generator	Aggregators of Gen/ Dem	T -Conn Demand Facility	Interconnector Owners	T-Conn closed Distribution Systems	DSO Demand Customers
15	Automatic Under Frequency Control Schemes	LFLSS (Low Frequency Load Shedding Scheme									Х*
16	Automatic Over-Frequency	Over Frequency Generator Shedding Scheme		х	х				•		
10	Control Schemes	Step wise linear disconnection	х	х	х						
17	Automatic Scheme Against Voltage Collapse	UVLS (Under Voltage Load Shedding)									X**
	Frequency Deviation Management Procedure	Operational Reserve (FRR)	х	х	х		х				
18		Replacement Reserve (RR)	х	х	х		х				
10		Active power set points when Frequency is outside Alert Limits.	х	х	х		х				
		Authority to disconnect SGUs	х	х	х		х		х		
19	Voltage Deviation Management	Reactive power set-points	х								
	Procedure	Other TSO's making Mvars available							х		
20	Power Flow Management	Active power set points when power flow is outside Alert Limits.	х	х	х		х				
	Procedure	Special Protection Schemes	х	х	х						
21	Assistance for Active Power	Active power set points when system adequacy is lacking.	х	х	х		х				
	Procedure	Interconnectors Emergency Assistance (MWs)							х		
22	Manual Demand Disconnection Procedure	Emergency load shedding (Inc. Rota)									Х*
			* Unless Protected ** At locations designated TSO					d by the			

Table 6 - Mapping of SD Services against SGUs/ Non- SGUs

To simplify the mapping table, Table 7 has been provided to show the remaining system defence measures provided by SGUs in order of the service provided by most SGUs. Please note that some similar services from the same providers have been merged to minimise this summary table. Table 7 will be taken forward in the complementary document where Terms and Conditions for providing these services is discussed.

		SGUs						
Individual System Defence Measure / Service	Type D Generator (T-Connected)	Type D Generator (D-Connected)	Type C Generator	Type B Generator	Aggregators of Gen/ Dem	T -Conn Demand Facility	Interconnector Owners	T-Conn closed Distribution Systems
Authority to disconnect SGUs	х	х	х		х		х	
Operational Reserve (FRR) (Inc. Turlough Hill)	х	х	х		х	Ţ		
Replacement Reserve (RR)	х	х	х		х			
Active power set points when Freq./ Power Flow is outside Alert limits and system adequacy is lacking	х	х	х		х			
Special Protection Schemes (Inc. Step wise linear diaconnection)	х	х	х					
Over Frequency Generator Shedding Scheme		х	х					
Reactive power set-points	х							
Interconnector Emergency Assistance (MWs) & Making Mvars available							х	

Table 7 – Simplified Mapping of System Defence Services against SGUs

4.3.1 High Priority SGUs

In accordance with NCER, the TSO is to submit to the UR for approval the list of High Priority SGUs, which is defined as '*the SGU for which special conditions apply for disconnection and re-energisation*'.

In the Grid Code Protected Customers is a defined term which refers to customers that are excluded from Demand Control, GC OC.4.1.3 refers. Similarly, in the D-Code Demand Control is exercised equitable between customers, however, exemptions may apply to protected demand customers, D-Code OC3 - .1.7, refers.

While the definition of protected customer may apply to a customer connected directly to the transmission system there are currently none identified. As mentioned above, distribution connected demand customers protected or otherwise are not classified as SGUs under NCER, hence there are no High Priority SGUs identified for this SDP.

5. System Defence Plan - Measures

The SDP requires specific 'measures' to be in place as part of the implementation of the SDP. These measures include automatic schemes and procedures. The automatic schemes are identified as system defence measures if they are initiated when in the system is in Emergency state, whereas the procedures are all designed to be implemented when the system is in, or forecast to be imminently in an Emergency state.

The automatic schemes include;

- Automatic under-frequency control schemes
- Automatic over-frequency control schemes
- Automatic scheme against voltage collapse

The procedures include;

- Frequency deviation management procedure
- Voltage deviation management procedure
- Power flow management procedure
- Assistance for active power procedure
- Manual demand disconnection procedure

These schemes and procedures are discussed in turn in this chapter.

5.1 Automatic under-frequency control scheme

[In accordance with NCER Article 15]

5.1.1 Automatic Low Frequency Demand Disconnection

A low frequency load shedding scheme (LFLSS) is in place on the power system. This scheme is designed and implemented in collaboration between TSO and the DNO to ensure sufficient demand can be disconnected in the event of an exceptional low frequency event on the power system in Northern Ireland.

This scheme is designed to disconnect tranches of system demand at falling frequency thresholds. Under-frequency load shedding relays are installed at designated substations around Northern Ireland with the capability of disconnecting up to 60% of system demand, triggered at an initial frequency of 48.85 Hz, which is within the Emergency state. This scheme aims to disconnect load to stabilise system frequency, and the lowest frequency threshold at which load is disconnected is 48.50 Hz. The DNO provides the geographical dispersion of the affected load across Northern Ireland.

The current settings applied to the installed under frequency relays are detailed in the Table 6 below. The process is for the TSO to confirm to the DNO the number, size and the associated low frequency settings of these blocks, as specified in Grid Code OC4.4.8. The requirement is mandated on the TSO and DNO therefore no service agreements are involved. Note the settings are in accordance with the requirements of the NCER Article 15(5) and the scheme characteristics listed in the Annex for synchronous area of Ireland, reproduced as Figure 5 below for clarity. The settings are reviewed from time to time and any amendments will be in accordance with NCER.

Frequency (Hz)	(%) of total NI
	area Demand
48.85	6
48.80	6
48.75	6
48.70	6
48.65	6
48.60	6
48.55	12
48.50	12
40:00	12

Automatic low frequency demand disconnection scheme characteristics:

Parameter	Values SA Continental Europe	Values SA Nordic	Values SA Great Britain	Values SA Ireland	Measuring Unit
Demand disconnection starting man- datory level:	49	48,7 - 48,8	48,8	48,85	Hz
Frequency					
Demand disconnection starting man- datory level: Demand to be disconnected	5	5	5	6	% of the Total Load at national level
Demand to be disconnected					
Demand disconnection final manda- tory level:	48	48	48	48,5	Hz
Frequency					
Demand disconnection final manda- tory level:	45	30	50	60	% of the Total Load at national level
Cumulative Demand to be disconnected					
Implementation range	± 7	± 10	± 10	± 7	% of the Total Load at national level, for a given Frequency
Minimum number of steps to reach the final mandatory level	6	2	4	6	Number of steps
Maximum Demand disconnection for each step	10	15	10	12	% of the Total Load at national level, for a given step

Figure 3 – Automatic low frequency demand disconnection scheme characteristics

Following the activation of this scheme, no demand shed by operation of Automatic Load Shedding Devices will be restored without the specific direction of the TSO, OC4.4.8.4 refers

5.1.2 Management of Energy Storage Devices

There are multiple Battery Energy Storage Units progressing connections to the distribution system. As noted in NCER, we believe these energy storage devices will become important providers of under-frequency service in the future.

As this is new technology, we are working with providers to assess their capabilities and system services, e.g. recent volume capped tenders^{15.} We will continue to work with providers to agree reserve trigger frequencies and trajectories, noting that until the technology can meet NCER Article 15(3)(a) where the energy storage load can automatically switch to generation mode; we will ensure the energy storage device can automatically disconnect itself in accordance with NCER Article 15(3)(b) and in the frequency range between 48.85Hz and 49.00Hz in accordance with NCER Article 15(4).

¹⁵ http://www.soni.ltd.uk/how-the-grid-works/ds3-programme/ds3-consultations-andpub/index.xml

Electricity Emergency and Restoration – SDP for Northern Ireland

5.2 Automatic Over-frequency control scheme

[In accordance with NCER Article 16]

5.2.1 Over Frequency Generation Shedding (OFGS) Scheme

To help manage the frequency when facilitating the largest export on the all-Ireland system (East West Interconnector at full export) various tranches of wind farms are selected to trip for increasingly higher frequency, see Table 9.

In this scenario this is currently only likely when wind farms in Ireland are near full capability; therefore, only wind farms in Ireland are selected in this scheme. Note this scheme is from 50.50Hz to 51.50Hz and is an action within the Emergency state if the frequency deviation remains above 50.5Hz for more than one minute.

	Trigger	Approx.	
	(Hz)	Maximum Export	
	<	Capability	
		(MW)	
	50.50	20	
	50.60	20	
	50.70	20	
	50.80	25	
1	50.90	20	
	51.00	20	
	51.10	20	
	51.20	30	
	51.30	30	
	51.40	25	
	51.50	30	

 Table 9 – Over Frequency Generation Shedding Set Points

This scheme is implemented by the TSO on the protection relays at designated distribution connected windfarm connection. This is not contracted under a system service agreement but mandated under the Grid Code, CC6.4.3 and CC6.4.4 refers, which is a general clause for the TSO to specify the protection standards applicable to the transmission system and to specify the protection schemes necessary to protect the network, respectively.

5.2.2 Step Wise Linear Disconnection

NCER Article 16 (3) specifically mentions if the automatic over-frequency control scheme is insufficient to manage against the largest export then the TSO shall set up an additional step-wise linear disconnection scheme. For the synchronous area of all-Ireland the largest export is 530MW, when exporting at full load on the East West Interconnector (EWIC), so there is no TSO instructed scheme in place.

However, we are aware that various generators have over-frequency relays set to trip their generators at incremental frequencies from 50.50 Hz to 52.00Hz (the minimum withstand capability set by SOGL) and beyond, e.g. Coolkeeragh CCGT's associated steam turbine has over-frequency relays set at 53.0Hz.

Grid Code CC.6.4.3 and CC.6.4.4 provides the TSO the mandate to specify these over frequency protection schemes on both transmission and distribution connected generating units as required.

5.3 Automatic Scheme against Voltage Collapse

[In accordance with NCER Article 17]

There is one main automatic scheme installed to prevent voltage collapse, a scheme for low voltage demand disconnection known as Automatic Under Voltage Load Shedding (UVLS).

As noted in NCER Article 17 the automatic scheme against voltage collapse of the system defence plan may include a blocking scheme for on load tap changers, however, this requirement is dependent on a TSO assessment of need. No such need has been identified and we can confirm that no such agreement is in place with the DNO at the time of writing.

5.3.1 Automatic under-voltage load shedding (UVLS)

The purpose of the UVLS is to prevent a local voltage collapse cascading into a wider voltage collapse or system blackout. UVLS relays act alone or in small groups of two or three. UVLS is not implemented across the whole system but in local areas in lieu of network re-enforcement. There are a total of three 110kV stations with a UVLS scheme. These are reviewed regularly to ensure demand is not unnecessarily at risk.

The majority of the UVLS relays will operate if the 110kV voltage is detected at 95kV or below. There is a short time delay of between 5 to 15 seconds before the circuit breakers open and shed 30-35% of load. This automatic defence measure is provided for within the Grid Code CC6.9, where on request from the TSO, the DNO will co-operate with the

design and location of automatic low voltage demand disconnection. Any settings are specified by TSO in discussion with the DNO to ensure that protected customers are not included.

Load shedding may also be instructed manually as an emergency action, please see section 5.8 discussing Manual Demand Disconnection as it is employed not only for voltage issues but for frequency and thermal overload issues on transmission plant.

5.4 Frequency Deviation Management Procedure

[In accordance with NCER Article 18]

In accordance with NCER the Frequency Deviation Management procedures for the SDP are to be used when the frequency is outside Normal and Alert state limits or forecast to do so without any further corrective actions.

As mentioned within section 0 3.4.1 Frequency Management, generation regulating reserve is the first line of defence against a frequency deviation and while some procedures initiate before the system is in an Emergency state, and are hence categorised as remedial actions; the provision of operating reserve initiated after the 'time to recover frequency' has elapsed and hence during an Emergency state may be categorised as a system defence measure.

The general order in which sources of under frequency measures are applied is:

- 1. Generating units provide frequency response
 - a. Synchronous generating units govern upwards (FSM)
 - b. Non-synchronous (windfarm) units provide full available active power (LFSM-U)
- 2. Interconnector response
- 3. Demand side unit response
- 4. Load shedding

In a similar way to managing low frequency deviations, high frequency deviations follows a similar pattern.

The general order in which sources of over frequency measures are applied is:

- 1. Generating units provide frequency response
 - a. Synchronous generating units govern downwards (FSM)
- b. Non-synchronous (windfarm) units reduce output to Minimum Load (LFSM-O)
- 2. Interconnector response
- 3. Over Frequency Generator Shedding scheme
- 4. Generators are tripped

Please note, in accordance with NCER Article 15(2) all generation is either in FSM or LFSM (Grid Code CC.S1.1.5.2; CC.S1.2.4.2; CC.S2.1.7.2; CC.S2.1.7.3 refers). Please note that while LFSM-U is designed to initiate a response at a frequency threshold of 49.50Hz (Grid Code CC.8.8.7.1 & CC.8.8.7.2 refers) all generating unit PPMs will follow the curve for wind following (Non-RfG) Generating Units that initiate a response at a frequency of 49.80Hz. This is to ensure all non-RfG and RfG generating Units PPMs throughout the system are controlled identically while ensuring compliance with the RfG. LFSM-O initiates a response at a frequency threshold of 50.20Hz and therefore the

system is not in an Emergency state for either LFSM modes and are not categorised as a system defence measure.

Those frequency defence measures that are initiated during an emergency state are listed separately in the sections below.

In accordance with SOGL, RfG and DCC (and applied through Grid Code), all generation (and Demand side Units) must remain synchronised and providing reserve from 52.00Hz down to 47.00Hz, albeit below 47.50Hz they only need to stay operational for 20 seconds.

5.4.1 Demand Side Response

Several Demand Side Units currently provide automatic under frequency response and not all achieve this by disconnecting load. While disconnection of load is the largest proportion of demand side response, other sites achieve their response through a combination of fast wind down of processes, dynamic load reduction or displacement of net import from the grid using secondary energy sources such as batteries or fast starting generation.

The response characteristics vary unit by unit; however, FRR will be a system defence measure if a significant deviation remains below 49.50Hz for a minimum of one minute and hence the system is in an Emergency state. Additionally, demand side units providing static response will have thresholds of between 49.80Hz and 49.30Hz and may also be categorised as a defence measure, depending on the system state active at the time of initiation.

5.4.2 Active Power Set Points

In the synchronous area controlled by EirGrid and SONI all dispatchable generation and transmission connected demand is centrally controlled by the TSO, i.e. generation units are instructed from first sync and minimum generation level up to maximum export capability or any level in-between.

However, SONI have remote control of the active power set points of a significant majority of all wind farms on the system as all new PPMs greater than 5MW are required to be Controllable PPMs, as defined in the Grid Code.

While it may be necessary for a generator to synchronise or change their MW output the ultimate instruction would be to disconnect demand in response to a low frequency emergency or to disconnect generation for a high frequency emergency. This manual instruction is likely if the system frequency is an Emergency state but above the automatic triggering thresholds mentioned earlier, i.e. if below 49.50Hz and above the 48.85Hz LFDD threshold. Note that a high frequency Emergency state is from 50.50Hz and above this level then automatic OFGS is triggered. Therefore, the discussion on manual demand disconnection is covered in detail in section 5.8 as it is used not only for low frequency issues.

In accordance with NCER article 18(4) where SGUs are disconnected directly by the TSO in response to a frequency deviation as mentioned above; then the TSO shall prepare within 30 days a report detailing the rationale, implementation and impact of this action and submit it to the UR.

5.5 Voltage Deviation Management Procedure

[In accordance with EU NCER Article 19]

In accordance with NCER the Voltage Deviation Management procedures for the System Defence Plan are to be used when there is at least one violation of the voltage limits specified in SOGL, see section 3.4.2 for details.

5.5.1 Reactive power set points

When normal voltage increase techniques have been employed by the TSO (see section 3.4.2) and if the voltage is below normal system voltage range, additional voltage increase measures may be employed during the Emergency state:

- Dispatch out of merit generation to provide local MVArs
- Request neighbouring TSOs to provide additional MVArs
- Contact the DNO to determine the feasibility of blocking auto- transformers (fixed tap setting)

The general voltage variations are specified in Grid Code CC.5.4, and are aligned with the ranges set in the OSS. The TSO has the ability to adjust the active MW set point on generating units to achieve a dynamic MVAr capability to deal with changing system conditions. Each generating unit must provide sustained operation of their reactive power capability during transmission system disturbances across the full contingency voltage range specified by SOGL, see Table 2. The reactive power capability of generating units and PPMs are specified in the Grid Code CC.S1.1.3.2/3 and CC.S2.1.3.2/3 respectively.

Additionally, Interconnectors and hence neighbouring TSO's service provision is mandated in the Interconnector Operating Protocol, a tri-party agreement between Moyle Interconnector, SONI and National Grid ESO (GB System Operator) where specific services, including reactive power, are captured. The provision of reactive power is assumed available at all times unless the transfer on the Interconnector is equal to zero. There are two methods to control MVArs on the Interconnector; when in auto voltage control mode the Interconnector will maintain the voltage at Auchencrosh between 98% and 105% of 275 kV and when in Var Control mode, the Interconnector will maintain the reactive power transfer to the network at Auchencrosh.

If the voltage has dropped below recommended levels, and there is no indication of a rapid improvement then load shedding will be considered by the TSO. Rapid load shedding is carried out by the DNO upon instruction from the TSO, see section 5.8 for manual demand disconnection details.

5.6 Power Flow Management Procedure

[In accordance with NCER Article 20]

In accordance with NCER the Power Flow Management procedures for the System Defence Plan are to be used when there is at least one violation of the current limits in terms of thermal ratings specified for the individual plant and apparatus of the transmission system.

5.6.1 Active Power Set Points

Dispatch instructions are available to the TSO which generally involve an increase or decrease in active power. The Grid Code provides for each generating unit to the continuous modulation of active power supplied to the transmission system and of the type of dispatch instructions issued; CC.S1.1.5.1 and SDC2 refer respectively. The TSO monitors all relevant plant to ensure they are being operated in compliance with the dispatch instruction, Grid Code OC11.10.2, refers, including where possible maintaining the active power set point as instructed until the TSO instructs again. Where, in the TSOs reasonable opinion, to ensure the security standards in accordance with SOGL are maintained, the TSO may also select a Special Protection Scheme for stability or thermal reasons, see next section.

The ultimate action is to disconnect a user to protect the transmission system and this may be carried out to prevent exceeding the thermal ratings of transmission system equipment, GC SDC2.4.2.9 refers. While an individual user or users may be disconnected to correct a specific overload, see Special Protection Schemes below, wider issues may be resolved using manual demand disconnection, see section 5.8.

In accordance with NCER article 20 (3) where SGUs are disconnected directly by the TSO in response to a thermal ratings issue as mentioned above; then the TSO shall prepare a report within 30 days detailing the rationale, implementation and impact of this action and submit this to the UR.

5.6.2 Special Protection Schemes

These schemes are generally anti—islanding schemes to prevent a generator from being connected with insufficient load to provide a stable power island and load flow schemes to prevent thermal overloads. If the connection with the rest of the system is lost then the generator is inter-tripped to provide a safe shutdown and allow the TSO to restore the connection from the main interconnected system once the fault is cleared.

There is one example where a protection scheme is designed to protect the thermal rating of overhead line circuits and create two power islands which are each large

enough to remain stable. This is the system separation protection scheme where the North-South 275kV double circuit tie-line between EirGrid and SONI is protected. There are two further 110kV North-South circuits that run in parallel and in normal operation the majority of the power flows are on the higher voltage circuits. The double circuit 275kV fault is a credible contingency which would result in unmanageable overloads on the 110kV circuits. Therefore, there is an inter-trip to the 110kV circuit breakers to ensure all four circuits are disconnected in the event of the double circuit fault. This results in the safe separation of the EirGrid and SONI systems and is one of the triggering events that lead to the declaration of an Emergency state.

A consequential impact of the system separation scheme is that it may trigger the Moyle Interconnector runback scheme. One of the largest credible loss of demand scenarios on the Northern Ireland transmission system is the export transfer to the Irish Republic. To mitigate against a high frequency event occurring in Northern Ireland following the loss of this tie-line an automatic runback facility exists on the Moyle Interconnector. Should the interconnector to the Irish Republic fault, Moyle will automatically reduce the import to Northern Ireland and/or begin exports to NGESO. The runback scheme is in service when required for system security with the MW level set dependent on the Northern Irish transfer to the Republic of Ireland, Interconnector Operating Protocol refers.

5.7 Assistance for Active Power Procedure

[In accordance with NCER Article 21]

In accordance with NCER, the Assistance for Active Power procedures for the System Defence Plan are to be used when there is an absence of control area adequacy in the day-ahead or intraday timeframe. For an Emergency state to be declared it is likely / imminent that in the period immediately ahead (i.e. in the next 4 hours) there is a high risk of failing to meet system demand, for a clear calculation of the situation arising see Section 3.1.

Forecasting the system margin (or adequacy) is carried out in long term planning and an absence of margin may be declared up to the day ahead, based on scheduling runs, by issuing an Amber warning and declaring an Alert State to see if there is additional generation available, however, if the market fails to respond and an Emergency state is likely then the following additional procedures are available to the TSO.

5.7.1 Assistance for active power from SGU

All centrally dispatched generation units are by definition instructed by the TSO and are automatically available up to their declared Maximum Export Capacity (MEC), see the procedure for the TSO to issue dispatch instructions, Grid Code SDC2 refers. In addition the TSO has the ability to use dispatch instructions to a generator which may require an

action or response which is outside the limits implied by the then current declarations, e.g. to increase their output to the technical capability of the generator and the power system at that time.

In planning timescales all users are to co-operate in co-ordinating their outages to minimise the impact on the transmission system. The TSO may request at any time an alteration to the timing and duration of an outage of transmission connected generators plus the deferment of any maintenance, OC.2.6.4 (e) and OC.2.6.4 (g) refers. This will ensure that the TSO has the maximum available generation capability. This together with cancelling transmission outages removes any constraints to generators providing full output.

5.7.2 Moyle Interconnector

In accordance with the Interconnector Operating Protocol agreed with NGESO, Moyle is able to provide Emergency Assistance (EA). This is a service both to and from the neighbouring system which is an effective increase or decrease in active energy into the requesting TSO transmission system. It is envisaged that EA will be required in extreme cases when one of the parties foresees a difficulty in meeting the expected demand on its system, or foresees a difficulty in maintaining security on its transmission system. EA will be assumed available for each TSO to instruct unless specifically withdrawn or an EAS level other than Normal or Alert state is active.

The maximum available EA volume is 180MW and is capped by the Net Transfer Capacity declared at the time of the request, however, the request for EA must be met by the other party provided that the party providing the EA does not foresee, in meeting such a request, a difficulty in meeting the expected demand /in maintaining security on its own transmission system.

There are firm prices agreed for EA within the Balancing and Ancillary Services Agreement (BASA), which forms the binding agreement between the TSOs for financial reconciliation for energy differences from planned operation. Provision of EA is for a maximum of 2 hours unless otherwise agreed by both parties.

5.8 Manual Demand Disconnection Procedure

[In accordance with EU NCER Article 22]

In accordance with NCER, the Manual Demand Disconnection procedures for the SDP are to be used when necessary to avoid prolonging an Emergency state.

Grid Code OC4 provides for the TSO to instruct demand control in general and applies to the TSO, DNO and impacted demand customers (D-Code Operating Code 3 refers). Demand control is concerned with the reduction of demand in the event of available generation being insufficient to meet demand, or in the event of breakdown or operating problems such as in respect of system frequency, voltage levels or thermal overloads on any part of the system.

The demand control arrangements may also apply where there is insufficient generation or transfers to meet demand in all or any part of another TSO's system where the TSO is able to assist the other TSOs. Please note the automatic demand control schemes and assistance with neighbouring TSOs are covered in a separate sections, 6.1 and 6.7 respectively.

For manual demand control this is specifically covered by Grid Code OC4.4.6, *Planned and/or Emergency Manual Disconnection*. Emergency Manual Disconnection is utilised by the TSO when a loss of generation or a mismatch of generation output and demand is such that there is an operational requirement to shed load at short notice (or no notice) to maintain an operational margin between generation output and demand. It is also used in certain circumstances to deal with operating problems such as unacceptable voltage levels and thermal overloads.

For the purposes of Rota Load Shedding, insofar as it is able, the TSO in conjunction with the DNO, will arrange that the total demand on the Northern Ireland System is arranged in groups of approximately 5 percent of total demand (as a percentage at time of winter peak) so that any or all such groups can be disconnected when the TSO considers it necessary. Where disconnection is envisaged by the TSO to be prolonged, the DNO will, where possible, utilise disconnection rotas where approximately 5 percent groups are interchanged to ensure (so far as possible) equitable treatment of customers. Grid Code OC4.1.3 and D-Code OC3 -1.7 refer to exemptions from load shedding that apply to protected customers.

In accordance with NCER article 22 (4) where demand is disconnected by the DNO as mentioned above; then the TSO shall prepare a report within 30 days detailing the rationale, implementation and impact of this action and submit this to the UR.

Note that this forced demand disconnection is only introduced after all possible voluntary (contracted) demand disconnection has been exhausted. This SDP measure is proportionate, non-discriminatory and temporary.

6. Next Steps

This concludes SONI's submission to the Utility Regulator(UR) of the proposed design of system defence plan in accordance with Articles 11 and 4.5 of the Commission Regulation (EU) 2017/2196 establishing a network code on electricity emergency and restoration of the Commission Regulation (EU).